
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Using the admin Object
A program can obtain a proxy for its object by calling the operation on a communicator:admin getAdmin

Slice

module Ice {
local interface Communicator {
 // ...
 Object* getAdmin();
};
};

This operation returns a null proxy if the administrative facility is disabled. The proxy returned by cannot be used for invoking operations getAdmin
because it refers to the default facet and, as we mentioned , the object does not support a default facet. A program must first obtain previously admin
a new version of the proxy that is configured with the name of a particular administrative facet before invoking operations on it. Although it cannot be
used for invocations, the original proxy is still useful because it contains the endpoints of the () and administrative object adapter Ice.Admin
therefore the program may elect to export that proxy to a remote client.

To administer a program remotely, somehow you must obtain a proxy for the program's object. There are several ways for the administrative admin
client to accomplish this:

Construct the proxy itself, assuming that it knows the object's identity, facets, and endpoints. The format of the is as admin stringified proxy
follows:

/admin -f :instance-name admin-facet admin-endpoints
The identity category, represented here by , is the value of the property or a UUID if that instance-name Ice.Admin.InstanceName
property is not defined. (Clearly, the use of a UUID makes the proxy much more difficult for a client to construct on its own.) The name of the
administrative facet is supplied as the value of the option, and the endpoints of the adapter appear last in the proxy.-f Ice.Admin
Invoke an application-specific interface for retrieving the object's proxy.admin
Use the operation on the interface, if the remote program was activated by IceGrid (see getServerAdmin IceGrid::Admin IceGrid

).Server Activation

Having obtained the proxy, the administrative client must select a facet before invoking any operations. For example, the code below shows how to
obtain the configuration properties of the remote program:

C++

// C++
Ice::ObjectPrx adminObj = ...;
Ice::PropertiesAdminPrx propAdmin = Ice::PropertiesAdminPrx::checkedCast(adminObj, "Properties");
Ice::PropertyDict props = propAdmin->getPropertiesForPrefix("");

Here we used an overloaded version of to supply the facet name of interest (). We could have selected the facet using checkedCast Properties
the instead, as shown below:proxy method ice_facet

C++

// C++
Ice::ObjectPrx adminObj = ...;
Ice::PropertiesAdminPrx propAdmin = Ice::PropertiesAdminPrx::checkedCast(
 adminObj->ice_facet("Properties"));
Ice::PropertyDict props = propAdmin->getPropertiesForPrefix("");

This code is functionally equivalent to the first example.

A remote client must also know (or be able to determine) which facets are available in the target server. Typically this information is statically
configured in the client, since the client must also know the interface types of any facets that it uses. If an invocation on a facet raises FacetNotExis

, the client may have used an incorrect facet name, or the server may have disabled the facet in question.tException

See Also

The admin Object
The Administrative Object Adapter

https://doc.zeroc.com/display/Ice35/The+admin+Object#TheadminObject-facets
https://doc.zeroc.com/display/Ice35/The+Administrative+Object+Adapter
https://doc.zeroc.com/display/Ice35/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.InstanceName
https://doc.zeroc.com/display/Ice35/IceGrid+Server+Activation
https://doc.zeroc.com/display/Ice35/IceGrid+Server+Activation
https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/The+admin+Object
https://doc.zeroc.com/display/Ice35/The+Administrative+Object+Adapter

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Ice Administrative Properties
Proxy and Endpoint Syntax
Automatic Retries
Facets and Versioning

https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties
https://doc.zeroc.com/display/Ice35/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/Ice35/Automatic+Retries
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning

	Using the admin Object

