
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Understanding Objects and Exceptions
On this page:

Distinguishing Objects and Servants
Design Considerations for Exceptions
Design Considerations for Objects
Composition using Slices
The Factory Requirement
Slice Formats

Compact Format
Sliced Format
Choosing a Format

Optional Objects
Preserving Slices
Unknown Sliced Objects

Distinguishing Objects and Servants
The term refers to a conceptual entity that is incarnated by a programming language object called a servant. An Ice object typically Ice object
implements a Slice , but could implement a Slice instead.interface class with operations

In addition, applications can transfer instances of Slice classes , using classes as just another type in the data model, along with other Slice by value
types such as structures and sequences. We refer to this usage as transferring , to distinguish it from the formal concept of objects by value Ice

.objects

As a refresher on Slice syntax, consider the following definitions:

Slice

class ClassWithOperations
{
 int cost;

 void updateCost();
};

interface Remote
{
 ClassWithOperations getByValue();
 ClassWithOperations* getByProxy();
};

As its name implies, the operation returns a object by value, whereas the operation returns a getByValue ClassWithOperations getByProxy
proxy to a remote Ice object that implements . Although their syntax is quite similar, the semantics of these two operations ClassWithOperations
are very different. Calling , a client receives a instance of on which it can access the member and getByValue local ClassWithOperations cost
call the method. With , a client can use the returned proxy to call as a remote invocation but cannot access updateCost getByProxy updateCost
the member, which is local state for the remote servant.cost

Design Considerations for Exceptions
Using exceptions to report error conditions is a generally accepted idiom, given its wide support in programming languages and its convenience in
simplifying a developer's error-handling responsibilities. The alternatives, such as using numeric error codes, can be unwieldy in practice and lack the
flexibility that a well-designed exception hierarchy provides. Slice does not impose any particular error-handling style on developers, but if you choose
to use Slice exceptions, you should understand their advantages and limitations.

Slice exception types support single inheritance, which allows you to compose hierarchies of related error conditions. Furthermore, exceptions may
have any number of data members, meaning your errors can convey as little or as much detail as you like. One limitation of exceptions is that they
are treated differently than other Slice data types: exceptions cannot be passed as parameters, and cannot be used as data members. The sole
purpose of an exception type is to appear in the clause of an operation.throws

As an Ice developer, you are not expected to know the intricacies of how Ice transfers exceptions from server to client. However, it can be very useful
for you to understand that , that are available, and that exceptions are composed of slices multiple encoding formats passing exceptions through

 may require additional effort.intermediaries

https://doc.zeroc.com/display/Ice35/Terminology#Terminology-IceObjects
https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Classes+with+Operations

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Design Considerations for Objects
The motivation for using objects by value is not as simple as for exceptions. If you wish to use the exception idiom, you have no choice but to use the
Slice exception model. However, an application is not forced to use objects by value. Other user-defined Slice types, such as sequences,
dictionaries, and structures, may satisfy the data model requirements of many applications. Classes and structures may seem similar at first glance
because they can both be used as data containers, but there are also some between them. Be sure you understand the significant differences archite

 before using them in your application. Granted, if your data model requires the use of inheritance, polymorphism, or self-ctural implications of classes
referential capabilities, you really have no other choice but to use classes.

One aspect of using objects by value that must not be overlooked is overhead, both in terms of the processing effort required to encode and decode
them, as well as the space consumed in messages that use them. In Ice 3.4 and earlier, objects by value were relatively expensive, likely causing
many developers to use structures when classes might have been the more convenient choice. In Ice 3.5, the new makes objects by compact format
value much more competitive with structures. Ice 3.5 also makes it possible to for situations where flexibility takes forward objects of unknown types
precedence over compactness.

Composition using Slices
The data encoding rules for and rely on the concept of in which each slice corresponds to a level in the type hierarchy and classes exceptions slices
contains the encoded data members defined at that level. The low-level details of the encoding rules are not relevant here, but having a basic
understanding of how Ice marshals and unmarshals classes and exceptions can help you with your design decisions. Consider this example:

Slice

class A
{
 int i;
};

class B extends A
{
 float f;
};

class C extends B
{
 string s;
};

The encoded form of an instance of class is summarized below:C

Slice Contents

C string s

B float f

A int i

Notice that the instance is encoded in order from most-derived to least-derived. For the sake of simplicity, we have omitted many of the encoding
details. For instance, we have not shown that the initial (most-derived) slice includes a type ID string such as that identifies the "::MyModule::C"
object's type.

Let's add the following interface to our discussion:

Although we used a class hierarchy in the example above, the behavior for exceptions is very similar.

https://doc.zeroc.com/display/Ice35/Classes+Versus+Structures
https://doc.zeroc.com/display/Ice35/Architectural+Implications+of+Classes
https://doc.zeroc.com/display/Ice35/Architectural+Implications+of+Classes
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Exceptions

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

1.
2.
3.

4.

Slice

interface I
{
 B getObject();
};

Now suppose a client invokes . Let's also suppose that the servant actually returns an instance of class , which is perfectly legal given getObject C
that derives from . The Ice run time in the client knows that the formal return type of the operation is and unmarshals the object as C B getObject B
follows:

Extract the type ID of the initial slice ()."::MyModule::C"
If this type is known to the client, instantiate the object, decode the state for each of its slices, and return the object.
If type is known to the client, which can occur when client and server are using different versions of the Slice definitions, the Ice run C not
time discards the encoded data for slice (also known as the object), reads the type ID of the next slice, and repeats step 2.C slicing
If type is also not known to the client then we have a problem. First, from a logical standpoint, the client know type because it is the B must B
statically-declared return type of the operation that the client just invoked. Second, we cannot slice this object any further because it would
no longer be compatible with the formal signature of the operation; the returned object must at least be an instance of , so we could not B
return an instance of . In either case, the Ice run time would raise an exception.A

Generally speaking, to unmarshal an instance of a class or exception, the Ice run time discards the slices of unknown types until it finds a type that it
recognizes, exhausts all slices, or can no longer satisfy the formal type signature of the operation. This slicing feature allows the receiver, whose
Slice definitions may be limited or outdated, to continue to function properly even when it does not recognize the most-derived type.

With this knowledge, we can now discuss new features introduced in Ice 3.5 that affect the run time's encoding rules for classes and exceptions.
Namely, a choice of and the ability to of unknown types. First, however, you should understand the need for encoding formats preserve the slices
object factories.

The Factory Requirement
For Slice classes that define data members but no operations, receiving an object by value is straightforward: the Ice run time examines the etype ID
ncoded with the object, translates that (in a language-specific manner) into the corresponding generated class, and creates an instance of that class
to represent the object. This happens without any help from the application. However, things get more complicated when a . class defines operations
By definition, such a class is abstract, therefore Ice cannot allocate an instance of the generated abstract class. Only the application knows which
derived class implements an abstract Slice class, so Ice requires the application to supply factories for translating type IDs into their programming
language equivalent objects.

The encoding for classes does not inform the receiver whether an object is abstract. As Ice processes each slice of an object, it first attempts to
locate the corresponding generated class. If Ice cannot find the class, or finds the class but determines that it is abstract, the run time looks for a
factory registered by the application for that type ID. If no factory is found to create the object, Ice may discard the slice as described above.

Here is some sample code to demonstrate the implementation and registration of a factory:

Ice does not require or support user-supplied factories for exceptions because exceptions cannot define operations.

https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Classes+with+Operations

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Java

private static class CWOFactory implements Ice.ObjectFactory
{
 public Ice.Object create(String typeId)
 {
 assert(typeId.equals(ClassWithOperations.ice_staticId()));
 return new ClassWithOperationsImpl();
 }

 public void destroy()
 {
 }
}

private static class ClassWithOperationsImpl extends ClassWithOperations
{
 public void updateCost()
 {
 // ...
 }
}

Ice.Communicator communicator = ...;
communicator.addObjectFactory(new CWOFactory(), ClassWithOperations.ice_staticId());

Our factory is only intended to create instances of the type we defined earlier, which is the reason for the assertion. In your ClassWithOperations
own application, you can partition the factory responsibilities however you wish. For example, you can define a separate factory class for each Slice
class, or use a single factory class that knows how to create multiple types. Whatever you decide, you must register a factory for each abstract class
that the program has the potential to receive, and the registrations must occur before any remote invocations are made that might return one of these
types.

Slice Formats
Version 1.0 of the Ice encoding, which is used by all versions of Ice through 3.4, supports a single format for encoding the slices of classes and
exceptions. The primary design goal for this format was the ability to support at the expense of a somewhat larger encoding. The fact that the slicing
encoding embeds the of each type in an instance's type hierarchy means the size of the encoded data is affected by the symbol names and type IDs
nesting depth of the Slice definitions. Consider this example:

Slice

module TopLevelModule
{
 module IntermediateModule
 {
 class Account { ... };
 class SubcontractorAccount extends Account { ... };
 };
};

The encoding for an instance of includes the following type ID strings:SubcontractorAccount

::TopLevelModule::IntermediateModule::SubcontractorAccount
::TopLevelModule::IntermediateModule::Account
::Ice::Object

The last ID serves as a terminator to indicate the last slice and reflects the fact that all object types ultimately derive from the base type.Object

You can also register a factory for a concrete Slice class if you wish to substitute a derived type, or simply because you want more control
over the allocation of that type.

https://doc.zeroc.com/display/Ice35/Type+IDs

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

As you can see, there is a non-trivial amount of overhead for passing objects by value. Note however that the encoding includes a lookup table for
type IDs to minimize this overhead as much as possible, meaning each unique type ID is only encoded once per message. While sending a single
instance of might be relatively expensive, sending a collection of objects amortizes this cost SubcontractorAccount SubcontractorAccount
over a number of instances. We can contrive situations where a message contains many instances of unrelated types, in which case the encoded
type IDs would have a greater impact on the size of the resulting message, but those scenarios are less common.

With version 1.1 of the encoding introduced in Ice 3.5, you now have two slice formats to choose from: and .compact sliced

Compact Format

The compact format in version 1.1 of the encoding sacrifices the feature of classes and exceptions to reduce the encoded size of these types. slicing
The format still encodes the type ID of the most-derived type, and continues to use a lookup table to prevent duplication of type IDs in a message, but
omits the type IDs for any intermediate types. Version 1.1 of the encoding also eliminates the need to encode the type ID for the base type of Object
class instances and, together with other optimizations, makes the encoded size of classes in the compact format much more competitive with that of
structures.

Ice 3.5 uses the compact format by default. Existing applications that rely on the slicing feature may begin receiving NoObjectFactoryException
errors after migrating to Ice 3.5, an indication that the run time does not recognize the most-derived type and cannot slice to a less-derived type
because the compact format omits the necessary type information. These applications must use the instead, which behaves similarly to sliced format
the format in version 1.0 of the encoding.

Using our previous example, an instance of still includes the type ID string SubcontractorAccount "::TopLevelModule::
 in the compact format, but omits the type ID strings for and . Clearly we IntermediateModule::SubcontractorAccount" Account Object

could reduce this overhead even further by using shorter symbol names and eliminating the nested module, or we could omit the type ID string
altogether by using a .compact type ID

Sliced Format

The sliced format in version 1.1 of the encoding retains the behavior of version 1.0: a receiver discards the slices of unknown types until it slicing
finds a type that it recognizes, exhausts all available slices, or slices so far that the result would violate the formal signature of the operation. The
sliced format still encodes the type IDs of the most-derived type as well as all intermediate types. However, unlike the 1.0 encoding, Ice no longer
encodes the type ID for the base type in class instances such that, along with other improvements in the 1.1 encoding, the sliced format is Object
still more efficient than the 1.0 encoding.

Choosing a Format

Ice uses the format by default, so an application that needs slicing behavior must explicitly enable it as follows:compact

Set the property to a non-zero value to force the Ice run time to use the sliced format by default.Ice.Default.SlicedFormat
Annotate your Slice definitions with metadata to selectively enable the sliced format for certain operations or interfaces.format

For example, suppose an application can safely use the compact format most of the time, but still needs slicing in a few situations. In this case the
application can use metadata to enable the sliced format where necessary:

Slice

interface Ledger
{
 Account getAccount(string id); // Uses compact format

 ["format:sliced"]
 Account importAccount(string source); // Uses sliced format
};

The semantics implied by these definitions state that the caller of assumes it will know every type that that might be returned, but the getAccount
same cannot be said for . By enabling the sliced format here, we allow the client to "slice off" what it does not recognize, even if that importAccount
means the client is left with only an instance of and not an instance of some derived type.Account

The slice format for classes and exceptions is nearly identical. The main difference is that, for an exception, there is no need for a type ID
lookup table because there can never be more than one instance of an exception in a message.

https://doc.zeroc.com/display/Ice35/Classes+with+Compact+Type+IDs
https://doc.zeroc.com/display/Ice35/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Defaul
https://doc.zeroc.com/display/Ice35/Slice+Metadata+Directives

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Now let's examine the opposite case: use the sliced format by default, and the compact format only in certain cases:

Slice

["format:sliced"]
interface Ledger
{
 ["format:compact"]
 Account getAccount(string id); // Uses compact format

 Account importAccount(string source); // Uses sliced format
};

Here we specify that all operations in use the sliced format unless overridden at the operation level, which we do for .Ledger getAccount

Keep the following points in mind when using the metadata:format

The chosen format only controls how Ice encodes a value and has no effect on the decoding process.

The format affects the input parameters, output parameters, and exceptions of an operation. Consider this example:

Slice

exception IncompatibleAccount { ... };

interface Ledger
{
 ["format:compact"]
 Account migrateAccount(Account oldAccount) throws IncompatibleAccount;
};

The metadata forces the client to use the compact format when marshaling the input parameter , and forces the server to use oldAccount
the compact format when marshaling the return value or the exception. For a given operation, it is not possible to use one format for the
parameters and a different format for the exceptions.

If you decide to use the property, be aware that this property only affects the sender of a class or Ice.Default.SlicedFormat
exception. For example, if you enable this property in the client but not the server, then all objects sent by the client use the sliced format by
default, but all objects and exceptions returned by the server use the compact format by default.

By offering two alternative formats, Ice gives you a great deal of flexibility in designing your applications. The compact format is ideal for applications
that place a greater emphasis on efficiency, while the sliced format is helpful when clients and servers evolve independently.

Optional Objects
Declaring a data member of type to be optional does not eliminate the Ice run time's requirement for type information. Suppose a client uses class
the following Slice definitions:

Slice

class UserInfo
{
 string name;
 optional(1) string organization;
};

Also suppose that the server is using a newer version of the definitions:

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

Slice

class GroupInfo
{
 ...;
};

class UserInfo
{
 string name;
 optional(1) string organization;
 optional(2) GroupInfo group;
};

When receiving an instance of , the Ice run time in the client ignores the member because it does not recognize its tag, but Ice UserInfo group
must still be able to unmarshal (or skip) the instance data in the message. If the server used the compact format for its reply, the client GroupInfo
will receive an exception while attempting to decode the message. On the other hand, this scenario would succeed when using the sliced format
because the format embeds enough information for the receiver to skip instances of unknown types.

The lesson here is that adding a new class type to your application can have unexpected repercussions, especially when using the compact format.
Remember that the can change formats without necessarily needing to update the receiver. For example, after adding the member to sender group U

, the server could begin using the sliced format for all operations that return to ensure that any existing clients would be able to serInfo UserInfo
ignore this member.

Preserving Slices
The concept of involves discarding the slices of unknown types when decoding an instance of a Slice class or exception. Here is a simple slicing
example:

Slice

class Base
{
 int b;
};

class Intermediate extends Base
{
 int i;
};

class Derived extends Intermediate
{
 int d;
};

interface Relay
{
 Base transform(Base b);
};

The server implementing the object must know the type (because it is statically referenced in the interface definition), but may not know Relay Base
 or . Suppose the implementation of involves forwarding the object to another back-end server for processing Intermediate Derived transform

and returning the transformed object to the caller. In effect, the server is an intermediary. If the server does not know the types Relay Relay Interm
 and , it will slice an instance to and discard the data members of any more-derived types, which is clearly not the intended ediate Derived Base

result because the back-end server know those types. The only way the server could successfully forward these objects is by knowing does Relay
all possible derived types, which makes the application more difficult to evolve over time because the intermediary must be updated each time a new
derived type is added.

Ice 3.5.1 Documentation

8 Copyright © 2017, ZeroC, Inc.

To address this limitation, Ice supports a new metadata directive that allows an instance of a Slice class or exception to be forwarded with all of its
slices intact, even if the intermediary does not know one or more of the instance's derived types. The new directive, , is shown preserve-slice
below:

Slice

["preserve-slice"]
class Base
{
 int b;
};

class Intermediate extends Base
{
 int i;
};

class Derived extends Intermediate
{
 int d;
};

["format:sliced"]
interface Relay
{
 Base transform(Base b);
};

With this change, all instances of , and types derived from , are encoded in a format that allows them to be forwarded intact. Also notice Base Base
the addition of the metadata on the interface, which ensures that its operations use the sliced format and not the default format:sliced Relay
compact format.

Unknown Sliced Objects
The combination of preserved slices and the sliced format means Ice applications now have a subtle new capability that was not available prior to Ice
3.5. Suppose we modify our example as shown below:Relay

Slice

["preserve-slice"]
class Base
{
 int b;
};

class Intermediate extends Base
{
 int i;
};

class Derived extends Intermediate
{
 int d;
};

["format:sliced"]
interface Relay
{
 Object transform(Object b);
};

http://formatsliced

Ice 3.5.1 Documentation

9 Copyright © 2017, ZeroC, Inc.

The only difference here is the signature of the operation, which now uses the type. Technically, it is not necessary for the transform Object
intermediary server to know of the class types that might be relayed via this new definition of because the formal types in its any transform
signature do not impose any requirements. As long as any object types known by the intermediary are marked with , and the preserve-slice tran

 operation uses the sliced format, this intermediary is capable of relaying objects of any type.sform

If the Ice run time in the intermediary does not know any of the types in an object's inheritance hierarchy, and the formal type is , Ice uses an Object
instance of to represent the object:UnknownSlicedObject

C++

namespace Ice {
class UnknownSlicedObject : public Object, ... {
public:

 const std::string& getUnknownTypeId() const;
 SlicedDataPtr getSlicedData() const;

 ...
};
}

The implementation of receives an instance of and can use that object as its return value. If necessary, the transform UnknownSlicedObject
implementation can determine the most-derived type of the object by calling . The actual encoded state of the object is getUnknownTypeId
encapsulated by the class:SlicedData

Slice

namespace Ice {
struct SliceInfo : public IceUtil::Shared {
 std::string typeId;
 std::vector<Byte> bytes;
 std::vector<ObjectPtr> objects;
 bool hasOptionalMembers;
 bool isLastSlice;
};

class SlicedData : public ... {
public:
 SlicedData(const SliceInfoSeq&);
 const SliceInfoSeq slices;

 ...
};
}

Applications do not normally need to use these types, but they provide all of the information the run time requires to forward an instance.

The definition of , and are very similar in the other language mappings and are not shown here.UnknownSlicedObject SlicedData SliceInfo

See Also

Terminology
Architectural Implications of Classes
Classes Versus Structures
Data Encoding for Classes
Data Encoding for Exceptions
Slice Metadata Directives
Classes with Compact Type IDs

https://doc.zeroc.com/display/Ice35/Terminology
https://doc.zeroc.com/display/Ice35/Architectural+Implications+of+Classes
https://doc.zeroc.com/display/Ice35/Classes+Versus+Structures
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Classes
https://doc.zeroc.com/display/Ice35/Data+Encoding+for+Exceptions
https://doc.zeroc.com/display/Ice35/Slice+Metadata+Directives
https://doc.zeroc.com/display/Ice35/Classes+with+Compact+Type+IDs

	Understanding Objects and Exceptions

