
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

The Server-Side main Program in Python
This section discussed how to initialize and finalize the server-side run time.

On this page:

Initializing and Finalizing the Server-Side Run Time in Python
The Ice.Application Class in Python

Using Ice.Application on the Client Side in Python
Catching Signals in Python
Ice.Application and Properties in Python
Limitations of Ice.Application in Python

Initializing and Finalizing the Server-Side Run Time in Python
The main entry point to the Ice run time is represented by the local interface . As for the client side, you must initialize the Ice Ice::Communicator
run time by calling before you can do anything else in your server. returns a reference to an instance of Ice.initialize Ice.initialize Ice.

:Communicator

Python

import sys, traceback, Ice

status = 0
ic = None
try:
 ic = Ice.initialize(sys.argv)
 # ...
except:
 traceback.print_exc()
 status = 1

...

Ice.initialize accepts the argument list that is passed to the program by the operating system. The function scans the argument list for any
command-line options that are relevant to the Ice run time; any such options are removed from the argument list so, when returns, Ice.initialize
the only options and arguments remaining are those that concern your application. If anything goes wrong during initialization, throws initialize
an exception.

You can pass a second argument of type to . is defined as follows:InitializationData Ice.initialize InitializationData

Python

class InitializationData(object):
 def __init__(self):
 self.properties = None
 self.logger = None
 self.threadHook = None

You can pass in an instance of this class to set for the communicator, establish a , and to establish a .properties logger thread notification hook

Before leaving your program, you call . The operation is responsible for finalizing the Ice run time. In must Communicator.destroy destroy
particular, waits for any operation implementations that are still executing in the server to complete. In addition, ensures that any destroy destroy
outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and memory. Never allow your
program to terminate without calling first; doing so has undefined behavior.destroy

The general shape of our server-side program is therefore as follows:

https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/display/Ice35/Thread+Safety

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Python

import sys, traceback, Ice

status = 0
ic = None
try:
 ic = Ice.initialize(sys.argv)
 # ...
except:
 traceback.print_exc()
 status = 1

if ic:
 try:
 ic.destroy()
 except:
 traceback.print_exc()
 status = 1

sys.exit(status)

Note that the code places the call to into a block and takes care to return the correct exit status to the operating system. Also Ice.initialize try
note that an attempt to destroy the communicator is made only if the initialization succeeded.

The Class in PythonIce.Application
The preceding program structure is so common that Ice offers a class, , that encapsulates all the correct initialization and Ice.Application
finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

Python

class Application(object):

 def __init__(self, signalPolicy=0):

 def main(self, args, configFile=None, initData=None):

 def run(self, args):

 def appName():
 # ...
 appName = staticmethod(appName)

 def communicator():
 # ...
 communicator = staticmethod(communicator)

The intent of this class is that you specialize and implement the abstract method in your derived class. Whatever code you Ice.Application run
would normally place in your main program goes into instead. Using , our program looks as follows:run Ice.Application

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

1.

2.

3.

4.

5.
6.

Python

import sys, Ice

class Server(Ice.Application):
 def run(self, args):
 # Server code here...
 return 0

app = Server()
status = app.main(sys.argv)
sys.exit(status)

You also can call with an optional file name or an structure. If you pass a to , the property main InitializationData configuration file name main
settings in this file are overridden by settings in a file identified by the environment variable (if defined). Property settings supplied on ICE_CONFIG
the take precedence over all other settings.command line

The function does the following:Application.main

It installs an exception handler. If your code fails to handle an exception, prints the exception information before Application.main
returning with a non-zero return value.
It initializes (by calling) and finalizes (by calling) a communicator. You can get access to the Ice.initialize Communicator.destroy
communicator for your server by calling the static accessor.communicator
It scans the argument list for options that are relevant to the Ice run time and removes any such options. The argument list that is passed to
your method therefore is free of Ice-related options and only contains options and arguments that are specific to your application.run
It provides the name of your application via the static member function. The return value from this call is the first element of the appName
argument vector passed to , so you can get at this name from anywhere in your code by calling Application.main Ice.Application.

 (which is often necessary for error messages).appName
It installs a signal handler that properly shuts down the communicator.
It installs a if the application has not already configured one. The per-process logger uses the value of the per-process logger Ice.

 property as a prefix for its messages and sends its output to the standard error channel. An application can also specify an ProgramName alt
.ernate logger

Using ensures that your program properly finalizes the Ice run time, whether your server terminates normally or in response to Ice.Application
an exception or signal. We recommend that all your programs use this class; doing so makes your life easier. In addition, also Ice.Application
provides features for signal handling and configuration that you do not have to implement yourself when you use this class.

Using on the Client Side in PythonIce.Application

You can use for your clients as well: simply implement a class that derives from and place the client code Ice.Application Ice.Application
into its method. The advantage of this approach is the same as for the server side: ensures that the communicator is run Ice.Application
destroyed correctly even in the presence of exceptions or signals.

Catching Signals in Python

The simple server we developed in had no way to shut down cleanly: we simply interrupted the server from the command line Hello World Application
to force it to exit. Terminating a server in this fashion is unacceptable for many real-life server applications: typically, the server has to perform some
cleanup work before terminating, such as flushing database buffers or closing network connections. This is particularly important on receipt of a
signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals, encapsulates Python's signal handling capabilities, allowing you to cleanly shut down on Ice.Application
receipt of a signal:

https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Using+Configuration+Files
https://doc.zeroc.com/display/Ice35/Using+Configuration+Files#UsingConfigurationFiles-ICE_CONFIG
https://doc.zeroc.com/display/Ice35/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/Ice35/The+Per-Process+Logger
https://doc.zeroc.com/display/Ice35/Command-Line+Parsing+and+Initialization#CommandLineParsingandInitialization-Ice.ProgramName
https://doc.zeroc.com/display/Ice35/Command-Line+Parsing+and+Initialization#CommandLineParsingandInitialization-Ice.ProgramName
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/display/Ice35/Hello+World+Application

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Python

class Application(object):
 # ...
 def destroyOnInterrupt():
 # ...
 destroyOnInterrupt = classmethod(destroyOnInterrupt)

 def shutdownOnInterrupt():
 # ...
 shutdownOnInterrupt = classmethod(shutdownOnInterrupt)

 def ignoreInterrupt():
 # ...
 ignoreInterrupt = classmethod(ignoreInterrupt)

 def callbackOnInterrupt():
 # ...
 callbackOnInterrupt = classmethod(callbackOnInterrupt)

 def holdInterrupt():
 # ...
 holdInterrupt = classmethod(holdInterrupt)

 def releaseInterrupt():
 # ...
 releaseInterrupt = classmethod(releaseInterrupt)

 def interrupted():
 # ...
 interrupted = classmethod(interrupted)

 def interruptCallback(self, sig):
 # Default implementation does nothing.
 pass

The methods behave as follows:

destroyOnInterrupt
This method installs a signal handler that destroys the communicator if it is interrupted. This is the default behavior.

shutdownOnInterrupt
This method installs a signal handler that shuts down the communicator if it is interrupted.

ignoreInterrupt
This method causes signals to be ignored.

callbackOnInterrupt
This method configures to invoke when a signal occurs, thereby giving the subclass Ice.Application interruptCallback
responsibility for handling the signal.

holdInterrupt
This method temporarily blocks signal delivery.

releaseInterrupt
This method restores signal delivery to the previous disposition. Any signal that arrives after was called is delivered when holdInterrupt
you call .releaseInterrupt

interrupted
This method returns if a signal caused the communicator to shut down, otherwise. This allows us to distinguish intentional True False
shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

interruptCallback
A subclass overrides this method to respond to signals. The function may be called concurrently with any other thread and must not raise
exceptions.

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

By default, behaves as if was invoked, therefore our server program requires no change to ensure that Ice.Application destroyOnInterrupt
the program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of by passing to the Ice.Application 1
constructor. In that case, signals retain their default behavior, that is, terminate the process.) However, we add a diagnostic to report the occurrence
of a signal, so our program now looks like:

Python

import sys, Ice

class MyApplication(Ice.Application):
 def run(self, args):

 # Server code here...

 if self.interrupted():
 print self.appName() + ": terminating"

 return 0

app = MyApplication()
status = app.main(sys.argv)
sys.exit(status)

Note that, if your server is interrupted by a signal, the Ice run time waits for all currently executing operations to finish. This means that an operation
that updates persistent state cannot be interrupted in the middle of what it was doing and cause partial update problems.

Ice.Application and Properties in Python

Apart from the functionality shown in this section, also takes care of initializing the Ice run time with property values. Ice.Application Properties
allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread pool size or port number
for a server. The method of accepts an optional second parameter allowing you to specify the name of a main Ice.Application configuration file
that will be processed during initialization.

Limitations of in PythonIce.Application

Ice.Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use Ice.
. Instead, you must structure your code as we saw in (taking care to always destroy the communicator).Application Hello World Application

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility
Thread Safety

https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Using+Configuration+Files
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/display/Ice35/Thread+Safety

	The Server-Side main Program in Python

