
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Type IDs
Each user-defined Slice type has an internal type identifier, known as its . The type ID is simply the fully-qualified name of each type. For type ID
example, the type ID of the interface in the is . All type IDs for user-defined types start Child preceding example ::Family::Children::Child
with a leading , so the type ID of the module is (not). In general, a type ID is formed by starting with the global scope (:: Family ::Family Family

) and forming the fully-qualified name of a type by appending each module name in which the type is nested, and ending with the name of the type ::
itself; the components of the type ID are separated by .::

The type ID of a proxy is formed by appending a to the type ID of an interface or class. For example, the type ID of a proxy is * Child ::Family::
.Children::Child*

The type ID of the Slice type is and the type ID of an proxy is .Object ::Ice::Object Object ::Ice::Object*

The type IDs for the remaining built-in types, such as , , and so on, are the same as the corresponding keyword. For example, the type ID of int bool
 is , and the type ID of is .int int string string

Type IDs are used internally by the Ice run time as a unique identifier for each type. For example, when an exception is raised, the marshaled form of
the exception that is returned to the client is preceded by its type ID on the wire. The client-side run time first reads the type ID and, based on that,
unmarshals the remainder of the data as appropriate for the type of the exception.

Type IDs are also used by the . operationice_isA

See Also

ice_isA

https://doc.zeroc.com/display/Ice35/Forward+Declarations
https://doc.zeroc.com/display/Ice35/Operations+on+Object#OperationsonObject-ice_isA
https://doc.zeroc.com/display/Ice35/Operations+on+Object#OperationsonObject-ice_isA

	Type IDs

