
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Run-Time Exceptions
In addition to any  that are listed in an operation's exception specification, an operation can also throw Ice . Run-user exceptions run-time exceptions
time exceptions are predefined exceptions that indicate platform-related run-time errors. For example, if a networking error interrupts communication 
between client and server, the client is informed of this by a run-time exception, such as  or .ConnectTimeoutException SocketException

The exception specification of an operation must not list any run-time exceptions. (It is understood that all operations can raise run-time exceptions 
and you are not allowed to restate that.)

On this page:

Inheritance Hierarchy for Exceptions
Local Versus Remote Exceptions

Common Exceptions
ObjectNotExistException
FacetNotExistException
OperationNotExistException

Unknown Exceptions
UnknownUserException
UnknownLocalException
UnknownException

Inheritance Hierarchy for Exceptions
All the Ice run-time and user exceptions are arranged in an inheritance hierarchy, as shown below:

Inheritance structure for exceptions.

Ice::Exception is at the root of the inheritance hierarchy. Derived from that are the (abstract) types  and Ice::LocalException Ice::
. In turn, all run-time exceptions are derived from , and all user exceptions are derived from UserException Ice::LocalException Ice::
.UserException

This figures shows the complete hierarchy of the Ice run-time exceptions:

https://doc.zeroc.com/display/Ice35/User+Exceptions


Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.



Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

Note that  groups several exceptions into a single box to save space (which, strictly, is incorrect UML syntax). Also Ice run-time exception hierarchy
note that some run-time exceptions have data members, which, for brevity, we have omitted in the . These data Ice run-time exception hierarchy
members provide additional information about the precise cause of an error.

Many of the run-time exceptions have self-explanatory names, such as . Others indicate problems in the Ice run time, MemoryLimitException
such as . Still others can arise only through application programming errors, such as . In EncapsulationException TwowayOnlyException
practice, you will likely never see most of these exceptions. However, there are a few run-time exceptions you will encounter and whose meaning you 
should know.

Local Versus Remote Exceptions

Common Exceptions

Most error conditions are detected on the client side. For example, if an attempt to contact a server fails, the client-side run time raises a ConnectTim
. However, there are three specific error conditions (shown as shaded in the  diagram) that are eoutException Ice run-time exception hierarchy

detected by the server and made known explicitly to the client-side run time via the Ice protocol: , ObjectNotExistException FacetNotExistEx
, and .ception OperationNotExistException

ObjectNotExistException

This exception indicates that a request was delivered to the server but the server could not locate a servant with the identity that is embedded in the 
proxy. In other words, the server could not find an object to dispatch the request to.

An  is a death certificate: it indicates that the target object in the server does not exist.ObjectNotExistException

Most likely, this is the case because the object existed some time in the past and has since been destroyed, but the same exception is also raised if a 
client uses a proxy with the identity of an object that has never been created. If you receive this exception, you are expected to clean up whatever 
resources you might have allocated that relate to the specific object for which you receive this exception.

FacetNotExistException

The client attempted to contact a non-existent  of an object, that is, the server has at least one servant with the given identity, but no servant facets
with a matching facet name.

OperationNotExistException

This exception is raised if the server could locate an object with the correct identity but, on attempting to dispatch the client's operation invocation, the 
server found that the target object does not have such an operation. You will see this exception in only two cases:

You have used an unchecked down-cast on a proxy of the incorrect type.
Client and server have been built with Slice definitions for an interface that disagree with each other, that is, the client was built with an 
interface definition for the object that indicates that an operation exists, but the server was built with a different version of the interface 
definition in which the operation is absent.

Unknown Exceptions

Any error condition on the server side that is not described by one of the three preceding exceptions is made known to the client as one of three 
generic exceptions (shown as shaded in the  diagram): , Ice run-time exception hierarchy figure UnknownUserException UnknownLocalException
, or .UnknownException

UnknownUserException

This exception indicates that an operation implementation has thrown a Slice exception that is not declared in the operation's exception specification 
(and is not derived from one of the exceptions in the operation's exception specification).

We use the Unified Modeling Language (UML) for the object model diagrams (see  and  for details).[1] [2]

The Ice run time raises  only if there are no  in existence with a matching identity; otherwise, it raises ObjectNotExistException facets
.FacetNotExistException

https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning


Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

1.  
2.  

UnknownLocalException

If an operation implementation raises a run-time exception other than , , or ObjectNotExistException FacetNotExistException OperationN
 (such as a ), the client receives an . In other words, the Ice protocol otExistException NotRegisteredException UnknownLocalException

does not transmit the exact exception that was encountered in the server, but simply returns a bit to the client in the reply to indicate that the server 
encountered a run-time exception.

A common cause for a client receiving an  is failure to catch and handle all exceptions in the server. For example, if the UnknownLocalException
implementation of an operation encounters an exception it does not handle, the exception propagates all the way up the call stack until the stack is 
unwound to the point where the Ice run time invoked the operation. The Ice run time catches all Ice exceptions that "escape" from an operation 
invocation and returns them to the client as an .UnknownLocalException

UnknownException

An operation has thrown a non-Ice exception. For example, if the operation in the server throws a C++ exception, such as a , or a Java char*
exception, such as a , the client receives an .ClassCastException UnknownException

All other run-time exceptions (not shaded in the ) are detected by the client-side run time and are raised locally.Ice run-time exception hierarchy

It is possible for the implementation of an operation to throw Ice run-time exceptions (as well as user exceptions). For example, if a client holds a 
proxy to an object that no longer exists in the server, your server application code is required to throw an . If you do ObjectNotExistException
throw run-time exceptions from your application code, you should take care to throw a run-time exception only if appropriate, that is, do not use run-
time exceptions to indicate something that really should be a user exception. Doing so can be very confusing to the client: if the application "hijacks" 
some run-time exceptions for its own purposes, the client can no longer decide whether the exception was thrown by the Ice run time or by the server 
application code. This can make debugging very difficult.

See Also

User Exceptions
Interfaces, Operations, and Exceptions
Operations
Proxies
Interface Inheritance
Facets and Versioning

References

Booch, G., et al. 1998. . Reading, MA: Addison-Wesley.Unified Modeling Language User Guide
Object Management Group. 2001. . Framingham, MA: Object Management Group.Unified Modeling Language Specification

https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Operations
https://doc.zeroc.com/display/Ice35/Proxies
https://doc.zeroc.com/display/Ice35/Interface+Inheritance
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
http://amzn.com/0321267974
http://www.omg.org/spec/UML/

	Run-Time Exceptions

