
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Building Ice for .NET with Visual Studio
This page describes how to build and install Ice for .NET from source code using Visual Studio. If you prefer, you can also download binary

 for the supported distributions platforms.

On this page:

.NET Build Requirements
Compiling Ice for .NET with Visual Studio
Running the .NET Tests
Running the .NET Demos
SSL Notes for .NET Tests and Demos
Protocol Compression with .NET
Installing Ice for .NET on Windows

GAC Installation
Targeting Managed Code
Targeting .NET Compact Framework

.NET Compact Framework Build Requirements
Building Ice for .NET Compact Framework
Running the .NET Compact Framework Tests
Building the .NET Compact Framework Demos

Targeting Silverlight
Silverlight Build Requirements
Building Ice for Silverlight
Installing Ice for Silverlight
Running the Silverlight Tests and Demos

Targeting Unity

.NET Build Requirements
Ice for .NET has been extensively tested using the operating systems and compilers listed on our .platforms page

Compiling Ice for .NET with Visual Studio
Unpack the archive. The .NET sources will be located in the subdirectory.Ice-3.5.1\cs

You will need the Slice to C# translator () and supporting executables and libraries from Ice for C++. You can download a slice2cs binary distribution
 from the ZeroC web site, or you can build Ice for C++ yourself.

If you have not built Ice for C++ in the subdirectory, set to the directory of your Ice for C++ installation. For example:cpp ICE_HOME

> set ICE_HOME=C:\Ice-3.5.1

Change to the subdirectory of the Ice source distribution:cs

> cd Ice-3.5.1\cs

Open and review the comments that describe the settings you can modify. For example, you may wish to config\Make.rules.mak.cs
enable optimization.

Run nmake:

> nmake /f Makefile.mak

The tests and sample programs are built automatically. If you modify the source code of a sample program, you can rebuild it using nmake.

You can also build the demos using the Visual Studio solution located in .demo\demo.sln

Running the .NET Tests
Some of the Ice for .NET tests employ applications that are part of Ice for C++. If you have not built Ice for C++ from the subdirectory, then you cpp
need to set the environment variable to the path where these applications are installed for the tests to run properly:ICE_HOME

The demo projects require the . The add-in is installed automatically when you use the Ice installer, or you can Ice Visual Studio Add-In
install the add-in manually by following the instructions in ...\vsaddin\INSTALL.txt

http://www.zeroc.com/download.html
http://www.zeroc.com/download.html
http://www.zeroc.com/platforms_3_5_1.html
http://www.zeroc.com/download.html
https://doc.zeroc.com/display/Ice35/Visual+Studio+Add-in

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.
5.

> set ICE_HOME=c:\Ice-3.5.1

Python is required to run the test suite. To run the tests, open a command window and change to the top-level directory. At the command prompt,
execute:

> python allTests.py

You can also run tests individually by changing to the test directory and running this command:

> python run.py

If everything worked out, you should see lots of "ok" messages. In case of a failure, the tests abort with "failed".

Running the .NET Demos
To run the demos, you need to have the directory in your and the directory in your . See the cpp\bin PATH cs\Assemblies DEVPATH README
file in each demo directory for a description of the demo.

Note that for demos that use IceSSL, the IceSSL plug-in configuration does not contain the fully-qualified name (FQN) for the IceSSL assembly.
Instead it just contains the partial name:

Ice.Plugin.IceSSL=IceSSL:IceSSL.PluginFactory

The IceSSL assembly is found though the use of , which is enabled in the files. If you want to run an application using the DEVPATH *.exe.config
IceSSL assembly installed in the GAC without the use of the files, you must add the FQN to the IceSSL plug-in configuration, as *.exe.config
shown below:

Ice.Plugin.IceSSL=IceSSL, Version=3.5.1.0, Culture=neutral, PublicKeyToken=cdd571ade22f2f16:IceSSL.
PluginFactory

Note that is the token corresponding to ZeroC's public key for signing the assemblies in binary distributions. If you built Ice from cdd571ade22f2f16
sources, your assemblies were signed using the development key instead, which you can find in . The token for the config/IceDevKey.snk
development key is .1f998c50fec78381

SSL Notes for .NET Tests and Demos
In order to use SSL with the tests and sample programs, an SSL certificate must be installed on your system. The configuration files handle this for
you, but you will be presented with a confirmation dialog the first time you run a test or sample program.

Once you are finished with the tests and sample programs, follow these steps to remove the certificate:

Start Internet Explorer.
Select Internet Options from the Tools menu.
Select the Content tab and click the "Certificates" button.
Select the Trusted Root Certification Authorities tab.
Select the entry for "ZeroC Test CA", click the Remove button, and confirm that you want to remove this certificate.

Note that under Windows Vista, the IceSSL configuration test is disabled due to an apparent bug with the .NET framework in which obsolete SSL
session ids are reused and cause server authentication to fail. This bug manifests itself in those applications that initialize and destroy multiple
IceSSL plug-ins in the same process. As this is an unusual use case, we do not believe it will affect most Ice applications.

Protocol Compression with .NET

Ice for .NET attempts to dynamically load to support bzip2.dll protocol compression, therefore this DLL must be present in your . Ice PATH

automatically disables protocol compression if the DLL cannot be found.

On 64-bit Windows, you must ensure that Ice finds the 64-bit version of before the 32-bit bzip2.dll version. The 64-bit and 32-bit bzip2 libraries are

installed in and \bin\x64prefix , respectively. For 64-bit Windows, the\binprefix directory must appear before \bin\x64prefix \binprefix

 in your application's . (The Ice run time prints a warning to the console PATH if it detects a format mismatch during start-up.)bzip2.dll

Installing Ice for .NET on Windows

http://www.python.org/download

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Run to install Ice for .NET in the directory specified by the variable in nmake /f Makefile.mak install prefix config\Make.rules.mak.
. After installation, the directory contains executables (such as), and the directory contains cs \binprefix iceboxnet.exe \Assembliesprefix

the .NET assemblies.

GAC Installation

You can add the assemblies to the Global Assembly Cache (GAC). To do this, open Windows Explorer and navigate to the directory C:
. Next, drag and drop (or copy and paste) the assemblies from into the right-hand pane to install \WINDOWS\assembly Ice-3.5.1\Assemblies

them in the cache.

You can also use from the command line to achieve the same result:gacutil

> gacutil /i library.dll

The gacutil tool is included with your Visual C# installation. For example, if you have installed Visual Studio 2010 in , the path to C:\Program Files
gacutil is

C:\Program Files\Microsoft SDKs\Windows\v7.0A\bin\gacutil.exe

Once installed in the cache, the assemblies will always be located correctly without having to set environment variables or copy them into the same
directory as an executable.

If you want line numbers for stack traces, you must also install the PDB () files in the GAC. Unfortunately, you cannot do this using Explorer, so .pdb
you have to do it from the command line. Open a command shell window and navigate to C:\WINDOWS\assembly\Microsoft.

 (assuming is your system root). Doing a directory listing there, you will find a directory named NET\GAC_MSIL\Ice C:\WINDOWS v4.0_3.5.0.0__
, for example:UUID

v4.0_3.5.0.0__cdd571ade22f2f16

Change to that directory (making sure that you use the correct version number for this release of Ice). In this directory, you will see the you Ice.dll
installed into the GAC in the preceding step. Now copy the file into this directory:Ice.pdb

> copy .path_to_ice.pdb

Targeting Managed Code
By default, Ice for .NET uses unmanaged code for performing protocol compression and for handling signals in the class. Ice.Application You
can build a managed version of Ice for .NET that lacks the aforementioned features by editing and config/Make.rules.mak.cs uncommenting
the line before you build.MANAGED=yes

Targeting .NET Compact Framework

.NET Compact Framework Build Requirements

Ice for .NET Compact Framework requires Microsoft Visual Studio 2008 SP1 and the .NET Compact Framework Version 3.5 SP1.

The default configuration in produces Ice assemblies for use with .NET. If you wish to use Ice with the .config\Make.rules.mak.cs
NET Compact Framework, you must re-build the sources.

Building Ice for .NET Compact Framework

To build Ice for .NET Compact Framework, open and set . Run nmake as before:config\Make.rules.mak.cs COMPACT=yes

> nmake /f Makefile.mak

The .NET Compact Framework assemblies and binaries are generated into the and directories, respectively.Assemblies\cf bin\cf

Running the .NET Compact Framework Tests

To run the tests, open a command window and change to the top-level directory. At the command prompt, execute:

> python allTests.py --compact

Building the .NET Compact Framework Demos

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

To build the demos, you must first install the . You can install the Add-in using the Windows MSI installer; for manual Ice Visual Studio Add-In
installation instructions, refer to the file ...\vsaddin\INSTALL.txt

Use the Visual Studio solution located in to build the demos.demo\democf.sln

Targeting Silverlight

Silverlight Build Requirements

Ice for Silverlight can be built with the following build configurations:

 Microsoft Visual Studio 2010 SP1 with Silverlight 5.0. There are two additional prerequisites for this build configuration:
Microsoft Silverlight 5.0 SDK
Microsoft Silverlight 5 Tools

Microsoft Visual Studio 2012 with Silverlight 5.1 on Windows 8.0.
Microsoft Visual Studio 2013 with Silverlight 5.1 on Windows 8.1.

The default configuration in produces Ice assemblies for use with .NET. If you wish to use Ice with Silverlight, you config\Make.rules.mak.cs
must re-build the sources.

Building Ice for Silverlight

To build Ice for Silverlight, open and set . Run nmake as before:config\Make.rules.mak.cs SILVERLIGHT=yes

> nmake /f Makefile.mak

The Silverlight assemblies are generated into the directory.Assemblies\sl

Installing Ice for Silverlight

To install Ice for Silverlight run

> nmake /f Makefile.mak install

This will install Ice for Silverlight in the directory specified by the variable in . The Ice assemblies will be prefix config\Make.rules.mak.cs
located in the directory.\Assemblies\slprefix

Running the Silverlight Tests and Demos

To build the tests and demos, you must first install the . You can install the Add-in using the Windows MSI installer; for Ice Visual Studio Add-In
manual installation instructions, refer to the file t...\vsaddin\INSTALL.tx

Use the Visual Studio solutions located in and to build the tests and demos, respectively.test\testsl.sln demo\demosl.sln

Silverlight has no server-side support; you must build the servers from .NET:

> cd Ice-3.5.1\cs
> nmake /f Makefile.mak SILVERLIGHT=no

To run the tests, open a command window and change to the top-level directory. At the command prompt, execute:

> python allTests.py --silverlight

If everything worked out, you should see lots of "ok" messages. In case of a failure, the tests abort with "failed".

To run the demos, open the solution and follow the instructions in the file of each demo.demo\demosl.sln README.txt

Targeting Unity
 Ice for .NET can also be compiled to target the Unity 3 API. To build Ice for the Unity API, open and set config\Make.rules.mak.cs UNITY=yes
. Run as before:nmake

> nmake /f Makefile.mak

https://doc.zeroc.com/display/Ice35/Visual+Studio+Add-in
http://www.microsoft.com/download/en/details.aspx?id=28359
http://www.microsoft.com/download/en/details.aspx?id=28358
https://doc.zeroc.com/display/Ice35/Visual+Studio+Add-in

	Building Ice for .NET with Visual Studio

