
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Building Ice for .NET with Mono
This page describes how to build and install Ice for .NET from source code with Mono. If you prefer, you can also download for binary distributions
the supported platforms.

On this page:

Mono Build Requirements
Compiling Ice for .NET with Mono
Running the .NET Tests
Running the .NET Demos
Targeting Managed Code
Configuring the bzip2 Library
Running Mono Applications on Linux
Installing Ice for .NET on Linux

Mono Build Requirements
Ice for .NET requires Mono version 2.0.1 or later and is expected to build and run properly on any recent Linux distribution for x86 and x86_64 that
supports Mono. Ice for .NET has been extensively tested using the operating systems and Mono versions listed on our .platforms page

You need to install the and the RPMs to build Ice for .NET on SuSE Linux Enterprise Server.mono-core mono-devel

Compiling Ice for .NET with Mono
Unpack the source archive. The .NET sources will be located in the subdirectory.Ice-3.5.1/cs

You will need the Slice to C# translator () and supporting executables and libraries. You can download a from the ZeroC slice2cs binary distribution
web site, or you can build Ice for C++ yourself.

If you have not built Ice for C++ in the subdirectory, set cpp to the directory of your Ice for C++ installation. ICE_HOME For example:

$ export ICE_HOME=/opt/Ice-3.5.1

Change to the subdirectory of the Ice source distribution:cs

$ cd Ice-3.5.1/cs

Open and review the comments that describe the settings you can modify. For example, you may wish to config/Make.rules.cs
enable optimization.

Run make:

$ make

The tests and sample programs are built automatically. If you modify the source code of a sample program, you can rebuild it using make.

Running the .NET Tests
Some of the Ice for .NET tests employ applications that are part of Ice for C++. If you have not built Ice for C++ from the cpp subdirectory, then you
need to set the environment variable ICE_HOME to the path where these applications are installed for the tests to run properly:

$ export ICE_HOME=/opt/Ice-3.5.1

Python is required to run the test suite. To run the tests, open a command window and change to the top-level directory. At the command prompt,
execute:

$ python allTests.py

You can also run tests individually by changing to the test directory and running this command:

$ python run.py

IceSSL is not currently supported for Mono.

http://www.zeroc.com/download.html
http://www.zeroc.com/platforms_3_5_1.html
http://www.zeroc.com/download.html
http://www.python.org/download

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

If everything worked out, you should see lots of "ok" messages. In case of a failure, the tests abort with "failed".

Running the .NET Demos
To run the demos, you need to have the directory in your cpp/bin PATH and the directory in your . See the filcs/Assemblies MONO_PATH README
e in each demo directory for a description of the demo.

Targeting Managed Code
By default, Ice for .NET uses unmanaged code for performing protocol compression and for handling signals in the class on Ice.Application
Windows. You can build a managed version of Ice for .NET that lacks the aforementioned features by editing and uncommconfig/Make.rules.cs
enting the line before you build.MANAGED=yes

Configuring the bzip2 Library
The directory contains a file that configures the bzip2 library. You need to check that the library name specified for the bin Ice.dll.config target
attribute matches the name of the bzip2 library on your machine. If the attribute does not specify the correct name or if bzip2 is not installed, target
the Ice run time silently runs without protocol compression.

To test whether you have set the attribute correctly, run the server in as follows:demo/Ice/minimal

$ MONO_LOG_LEVEL=info MONO_LOG_MASK=dll mono --debug server.exe

This produces trace output that shows whether the bzip2 library could be located at run time. If the library could be found, you will see a line of trace
as follows:

Mono-INFO: Found as 'BZ2_bzlibVersion'.

Running Mono Applications on Linux
Mono binaries are interpreted so, given a binary called , you have to run the Mono interpreter with an argument to server.exe server.exe
execute that binary:

$ mono server.exe

If you want to avoid having to explicitly invoke the Mono interpreter, please refer to .Registering .exe as non-native binaries

Installing Ice for .NET on Linux
Open and change the variable to hold the top-level installation directory. This directory will be config/Make.rules.cs prefix
created automatically if necessary. Also review the comments for the variable and decide whether to enable it. Next, runGACINSTALL

$ make install

After installation, add the directory containing the libraries to your . When building applications, you need to reference the libraries with MONO_PATH
the option to .-r mcs

Alternatively, you can add the libraries to the global assembly cache. To do this, either set before building the libraries, or useGACINSTALL

$ gacutil -i <library.dll>

Once installed in the cache, the assemblies will always be located correctly without having to set environment variables.

Finally, you could also copy the necessary libraries into the directory that contains the for your application..exe

http://www.mono-project.com/Guide:Running_Mono_Applications

	Building Ice for .NET with Mono

