
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Python Mapping for Exceptions
On this page:

Inheritance Hierarchy for Exceptions in Python
Python Mapping for User Exceptions
Python Mapping for Run-Time Exceptions

Inheritance Hierarchy for Exceptions in Python
The mapping for exceptions is based on the inheritance hierarchy shown below:

Inheritance structure for Ice exceptions.

The ancestor of all exceptions is , from which is derived. and exceptions.Exception Ice.Exception Ice.LocalException Ice.
 are derived from and form the base for all run-time and user exceptions.UserException Ice.Exception

Python Mapping for User Exceptions
Here is a fragment of the once more:Slice definition for our world time server

Slice

exception GenericError {
 string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

https://doc.zeroc.com/display/Ice35/Proxies

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Python

class GenericError(Ice.UserException):
 def __init__(self, reason=''):
 self.reason = reason

 def ice_name(self):
 # ...

 def __str__(self):
 # ...

class BadTimeVal(GenericError):
 def __init__(self, reason=''):
 GenericError.__init__(self, reason)

 def ice_name(self):
 # ...

 def __str__(self):
 # ...

class BadZoneName(GenericError):
 def __init__(self, reason=''):
 GenericError.__init__(self, reason)

 def ice_name(self):
 # ...

 def __str__(self):
 # ...

Each Slice exception is mapped to a Python class with the same name. The inheritance structure of the Slice exceptions is preserved for the
generated classes, so and inherit from .BadTimeVal BadZoneName GenericError

Each exception member corresponds to an attribute of the instance, which the constructor initializes to a default value appropriate for its type. You
can also declare different for members of primitive and enumerated types. For derived exceptions, the constructor has one parameter default values
for each of the base exception's data members, plus one parameter for each of the derived exception's data members, in base-to-derived order. As
an example, although and do not declare data members, their constructors still accept a value for the inherited data BadTimeVal BadZoneName
member in order to pass it to the constructor of the base exception .reason GenericError

Optional data members use the same mapping as required data members, but an optional data member can also be set to the marker value Ice.
 to indicate that the member is unset. A well-behaved program must compare an optional data member to before using the Unset Ice.Unset

member's value:

Python

try:
 ...
except ex:
 if ex.optionalMember is Ice.Unset:
 print("optionalMember is unset")
 else:
 print("optionalMember = " + str(ex.optionalMember))

Each exception also defines the method to return the name of the exception, and the special method to return a stringified ice_name __str__
representation of the exception and its members.

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically by installing a Ice.UserException
handler for . Similarly, you can catch all Ice run-time exceptions with a handler for , and you can catch Ice.UserException Ice.LocalException
all Ice exceptions with a handler for .Ice.Exception

https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Optional+Data+Members

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Python Mapping for Run-Time Exceptions
The Ice run time throws for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive from run-time exceptions Ice

 (which, in turn, derives from)..LocalException Ice.Exception

By catching exceptions at the appropriate point in the inheritance hierarchy, you can handle exceptions according to the category of error they
indicate:

Ice.LocalException
This is the root of the inheritance tree for run-time exceptions.

Ice.UserException
This is the root of the inheritance tree for user exceptions.

Ice.TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

Ice.ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a can be handled as , , , or ConnectTimeoutException ConnectTimeoutException TimeoutException LocalException Exc
.eption

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; the fine-LocalException
grained error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time. Exceptions to this rule
are the exceptions related to and life cycles, which you may want to catch explicitly. These exceptions are facet object FacetNotExistException
and , respectively.ObjectNotExistException

See Also

User Exceptions
Run-Time Exceptions
Python Mapping for Identifiers
Python Mapping for Modules
Python Mapping for Built-In Types
Python Mapping for Enumerations
Python Mapping for Structures
Python Mapping for Sequences
Python Mapping for Dictionaries
Python Mapping for Constants
Optional Data Members
Facets and Versioning
Object Life Cycle

https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Modules
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Structures
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Constants
https://doc.zeroc.com/display/Ice35/Optional+Data+Members
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle

	Python Mapping for Exceptions

