Ice 3.4.2 Documentation

Ice Plug-In Properties

On this page:

Ice.InitPlugins
Ice.Plugin.name.cpp
Ice.Plugin.name.java
Ice.Plugin.name.clr
Ice.Plugin.name
Ice.PluginLoadOrder

Ice.InitPlugins

Synopsis

I ce. I nitPlugi ns=num

Description

If numis a value greater than zero, the Ice run time automatically initializes the plug-ins it has loaded. The order in which plug-ins are loaded and
initialized is determined by | ce. Pl ugi nLoadOr der . An application may need to set this property to zero in order to interact directly with a plug-in

after it has been loaded but before it is initialized. In this case, the application must invoke i ni ti al i zePl ugi ns on the plug-in manager to
complete the initialization process. If not defined, the default value is 1.

Ice.Plugin.name.cpp

Synopsis

I ce. Pl ugi n. nane. cpp=basenane[, versi on] : functi on [args]

Description

Defines a C++ plug-in to be installed during communicator initialization. The basenane and optional ver si on components are used to construct the
name of a DLL or shared library. If no version is supplied, the Ice version is used. The f unct i on component is the name of a function with C linkage.

For example, the entry point MyPlugin,34:create would imply a shared library name of | i bMyPl ugi n. so. 34 on Unix and MyPl ugi n34. dl | on
Windows. Furthermore, if Ice is built on Windows with debugging, a d is automatically appended to the version (for example, MyPl ugi n34d. di |).

The function must be declared with external linkage and have the following signature:

C++

<Pl ugi n>* function(const I|ce:: Conmuni catorPtr& communi cator,
const std::string& nane,
const lce::StringSeq& args);

Note that the function must return a pointer and not a smart pointer. The Ice run time deallocates the object when it unloads the library.

Any arguments that follow the entry point are passed to the cr eat e method. For example:

I ce. Pl ugi n. MyPl ugi n=MyFact ory, 34: create argl arg2

Ice.Plugin.name.java

Synopsis

I ce. Pl ugi n. nane. j ava=cl ass [args]

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Advanced+Plug-in+Topics#AdvancedPluginTopics-DelayedPlug-inInitialization
https://doc.zeroc.com/display/Ice34/Plug-in+API

Ice 3.4.2 Documentation

Description

Defines a Java plug-in to be installed during communicator initialization. The specified class must implement the | ce. Pl ugi nFact ory interface.
Any arguments that follow the class name are passed to the cr eat e method. For example:

I ce. Pl ugi n. MyPl ugi n=MyFactory argl arg2

Ice.Plugin.name.clr

Synopsis
I ce. Pl ugi n. nane. cl r=assenbl y: cl ass [args]

Description

Defines a .NET plug-in to be installed during communicator initialization. The assembly can be a partially or fully qualified assembly name, such as ny
pl ugi n, Ver si on=0. 0. 0. 0, Cul t ure=neutr al , or an assembly DLL name such as nypl ugi n. dl | .

@ You must use a fully qualified assembly name to load a plug-in from an assembly in the Global Assembly Cache.

The specified class must implement the | ce. Pl ugi nFact ory interface. Any arguments that follow the class name are passed to the cr eat e
method. For example:

I ce. Pl ugi n. MyPl ugi n=MyFact ory, Versi on=1. 2. 3. 4, Cul ture=neutral : MyFactory argl arg2

Ice.Plugin.name

Synopsis
I ce. Pl ugi n. nane=ent ry_poi nt [args]
Description
Defines a plug-in to be installed during communicator initialization. The format of ent ry_poi nt varies by Ice implementation language, therefore
this property cannot be defined in a configuration file that is shared by programs in different languages. Ice provides an alternate syntax that
facilitates such sharing:

® | ce. Pl ugin. nanme. cpp for C++

® | ce. Pl ugi n. nane. j ava for Java

® | ce. Pl ugin. nane. clr forthe .NET Common Language Runtime

Refer to the relevant property for your language mapping for details on the entry point syntax.

Ice.PluginLoadOrder
Synopsis
I ce. Pl ugi nLoadCr der =nanes

Description

Determines the order in which plug-ins are loaded. The Ice run time loads the plug-ins in the order they appear in nanes, where each plug-in name is
separated by a comma or white space. Any plug-ins not mentioned in nanes are loaded afterward, in an undefined order.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Plug-in+API
https://doc.zeroc.com/display/Ice34/Plug-in+API
https://doc.zeroc.com/display/Ice34/Plug-in+Facility
https://doc.zeroc.com/display/Ice34/Plug-in+Facility

	Ice Plug-In Properties

