Ice 3.4.2 Documentation

Object Life Cycle for the File System Application

Now that we have had a look at the issues around object life cycle, let us return to our file system application and add life cycle operations to it, so
clients can create and destroy files and directories.

To destroy a file or directory, the obvious choice is to add a dest r oy operation to the Node interface:

Slice

nmodul e Fil esystem {

exception GenericError {

string reason;
}
exception Perm ssionDeni ed extends GenericError {};
exception Namel nUse extends GenericError {};
exception NoSuchNane extends GenericError {};

interface Node {
i denpotent string nane();
voi d destroy() throws PernissionDenied;

}s

11
}s

Note that dest r oy can throw a Per mi ssi onDeni ed exception. This is necessary because we must prevent attempts to destroy the root directory.

The Fi | e interface is unchanged:

Slice

nodul e Fil esystem {
11

sequence<string> Lines;

interface File extends Node {
i denpotent Lines read();
i dempotent void wite(Lines text) throws CenericError;

}s

Note that, because Fi | e derives from Node, it inherits the dest r oy operation we defined for Node.
The Di r ect or y interface now looks somewhat different from the previous version:

® Thel i st operation returns a sequence of structures instead of a list of proxies: for each entry in a directory, the NodeDesc structure
provides the name, type, and proxy of the corresponding file or directory.

® Directories provide a f i nd operation that returns the description of the nominated node. If the nominated node does not exist, the operation
throws a NoSuchNane exception.

® ThecreateFil eandcreateDirectory operations create a file and directory, respectively. If a file or directory already exists, the
operations throw a Nanel nUse exception.

Here are the corresponding definitions:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System

Ice 3.4.2 Documentation

Slice

nodul e Fil esystem {
11

enum NodeType { DirType, FileType };

struct NodeDesc {
string name;
NodeType type;
Node* proxy;
I

sequence<NodeDesc> NodeDescSeq;

interface Directory extends Node {
i denpot ent NodeDescSeq |ist();
i denpot ent NodeDesc find(string nane) throws NoSuchNare;
File* createFile(string name) throws Nanel nUse;
Directory* createDirectory(string nane) throws Nanel nUse;
b
b

Note that this design is somewhat different from the factory we designed for the phone book application. In particular, we do not have a single object
factory; instead, we have as many factories as there are directories, that is, each directory creates files and directories only in that directory.

The motivation for this design is twofold:
® Because all files and directories that can be created are immediate descendants of their parent directory, we avoid the complexities of
parsing path names for a separator such as "/". This keeps our example code to manageable size. (A real-world implementation of a
distributed file system would, of course, be able to deal with path names.)

® Having more than one object factory presents interesting implementation issues that we will explore in the following discussion.

Let's move on to the implementation of this design in C++ and Java. You can find the full code of the implementation (including languages other than
C++ and Java) in the deno/ book/ | i f ecycl e directory of your Ice distribution.

Topics

® |Implementing Object Life Cycle in C++
® |Implementing Object Life Cycle in Java

See Also

® Slice for a Simple File System
® Object Creation

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Object+Creation#ObjectCreation-factory
https://doc.zeroc.com/pages/viewpage.action?pageId=5047989
https://doc.zeroc.com/display/Ice34/Implementing+Object+Life+Cycle+in+Java
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice34/Object+Creation

	Object Life Cycle for the File System Application

