
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.

2.

Object Identity
On this page:

The Ice::Identity Type
Syntax for Stringified Identities
Identity Helper Functions

The TypeIce::Identity
Each Ice object has an object identity defined as follows:

Slice

module Ice {
 struct Identity {
 string name;
 string category;
 };
};

As you can see, an object identity consists of a pair of strings, a and a . The complete object identity is the combination of and name category name
, that is, for two identities to be equal, both and must be the same. The member is usually the empty string, category name category category

unless you are using or .servant locators default servants

If is an empty string, must be the empty string as well. (An identity with an empty and a non-empty is illegal.) If a name category name category
proxy contains an identity in which is empty, Ice interprets that proxy as a null proxy.name

Object identities can be represented as strings; the category part appears first and is followed by the name; the two components are separated by a /
character, for example:

Factory/File

In this example, is the category, and is the name. If the or member themselves contain a character, the stringified Factory File name category /
representation escapes the character with a , for example:/ \

Factories\/Factory/Node\/File

In this example, the category is and the name is .Factories/Factory Node/File

Syntax for Stringified Identities
You rarely need to write identities as strings because, typically, your code will be using the and identity helper functions identityToString string

, or simply deal with proxies instead of identities. However, on occasion, you will need to use stringified identities in configuration files. If ToIdentity
the identities happen to contain meta-characters (such as a slash or backslash), or characters outside the printable ASCII range, these characters
must be escaped in the stringified representation. Here are rules that the Ice run time applies when parsing a stringified identity:

The parser scans the stringified identity for an un?escaped slash character (). If such a slash character can be found, the substrings to the /
left and right of the slash are parsed as the and members of the identity, respectively; if no such slash character can be category name
found, the entire string is parsed as the member of the identity, and the member is the empty string.name category
Each of the (if present) and substrings is parsed according to the following rules:category name

All characters in the string must be in the ASCII range 32 (space) to 126 (~); characters outside this range cause the parse to fail.
Any character that is not part of an escape sequence is treated as that character.
The parser recognizes the following escape sequences and replaces them with their equivalent character:

 (backslash)\\

Glacier2 also uses the member for filtering.category

https://doc.zeroc.com/display/Ice34/Servant+Locators
https://doc.zeroc.com/display/Ice34/Default+Servants
https://doc.zeroc.com/display/Ice34/Glacier2

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

2.

 (single quote)\'
 (double quote)\"
 (space)\b
 (form feed)\f
 (new line)\n
 (carriage return)\r
 (tab)\t

An escape sequence of the form , , or (where is a digit in the range 0 to 7) is replaced with the ASCII character with \o \oo \ooo o
the corresponding octal value. Parsing for octal digits allows for at most three consecutive digits, so the string is interpreted \0763
as the character with octal value 76 () followed by the character . Parsing for octal digits terminates as soon as it encounters a > 3
character that is not in the range 0 to 7, so is the character with octal value 7 (bell) followed by the character . Octal escape \7x x
sequences must be in the range 0 to 255 (octal 000 to 377); escape sequences outside this range cause a parsing error. For
example, is an illegal escape sequence.\539
If a character follows a backslash, but is not part of a recognized escape sequence, the backslash is ignored, so is the character \x x
.

Identity Helper Functions
To make conversion of identities to and from strings easier, the interface provides appropriate conversion functions:Communicator

Slice

local interface Communicator {
 string identityToString(Identity id);
 Identity stringToIdentity(string id);
};

For C++, Ruby, and PHP, the operations on the communicator are the only way to convert between identities and strings. For other languages, the
conversion functions are provided as operations on the communicator as well but, in addition, the language mappings provide static utility functions.
(The utility functions have the advantage that you can call them without holding a reference to the communicator.)

For Java, the utility functions are in the class and are defined as:Ice.Util

Java

package Ice;

public final class Util {
 public static String identityToString(Identity id);
 public static Identity stringToIdentity(String s);
}

For C#, the utility functions are in the class and are defined as:Ice.Util

C#

namespace Ice
{
 public sealed class Util
 {
 public static string identityToString(Identity id);
 public static Identity stringToIdentity(string s);
 }
}

The Python functions are in the module:Ice

For C++, the static utility functions are not provided due to the need to apply string conversions, and the are registered on string converters
the communicator.

https://doc.zeroc.com/pages/viewpage.action?pageId=5048091

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Python

def identityToString(ident)
def stringToIdentity(str)

These functions correctly encode and decode characters that might otherwise cause problems (such as control characters).

As mentioned in , each entry in the ASM for an object adapter must be unique: you cannot add two servants with Servant Activation and Deactivation
the same identity to the ASM.

See Also

Servant Activation and Deactivation
Servant Locators
Default Servants
C++ Strings and Character Encoding
Glacier2

https://doc.zeroc.com/display/Ice34/Servant+Activation+and+Deactivation
https://doc.zeroc.com/display/Ice34/Servant+Activation+and+Deactivation
https://doc.zeroc.com/display/Ice34/Servant+Locators
https://doc.zeroc.com/display/Ice34/Default+Servants
https://doc.zeroc.com/pages/viewpage.action?pageId=5048091
https://doc.zeroc.com/display/Ice34/Glacier2

	Object Identity

