Ice 3.4.2 Documentation

C-Sharp Mapping for Structures

Ice for .NET supports two different mappings for Slice structures. By default, Slice structures map to C# structures if they (recursively) contain only
value types. If a Slice structure (recursively) contains a string, proxy, class, sequence, or dictionary member, it maps to a C# class. A metadata
directive allows you to force the mapping to a C# class for Slice structures that contain only value types.

In addition, for either mapping, you can control whether Slice data members are mapped to fields or to properties.

On this page:

® Structure Mapping for Structures in C#
® Class Mapping for Structures in C#
® Property Mapping for Structures in C#

Structure Mapping for Structures in C#
Consider the following structure:

Slice

struct Point {
doubl e x;
doubl e vy;
s

This structure consists of only value types and so, by default, maps to a C# partial structure:

C#

public partial struct Point

{

public double x;

public double y;

public Point (doubl e x, double y);

public override int GetHashCode();

public override bool Equal s(object other);

public static bool operator==(Point |hs, Point rhs);

public static bool operator!=(Point |hs, Point rhs);
}

For each data member in the Slice definition, the C# structure contains a corresponding public data member of the same name.
The generated constructor accepts one argument for each structure member, in the order in which they are defined in the Slice definition. This allows

you to construct and initialize a structure in a single statement:

C#

Point p = new Point(5.1, 7.8);

Note that C# does not allow a value type to declare a default constructor or to assign default values to data members.

The structure overrides the Get HashCode and Equal s methods to allow you to use it as the key type of a dictionary. (Note that the static two-
argument version of Equal s is inherited from Syst em Cbj ect .) Two structures are equal if (recursively) all their data members are equal.
Otherwise, they are not equal. For structures that contain reference types, Equal s performs a deep comparison; that is, reference types are
compared for value equality, not reference equality.

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/Metadata
https://doc.zeroc.com/display/Ice34/Metadata

Ice 3.4.2 Documentation

Class Mapping for Structures in C#

The mapping for Slice structures to C# structures provides value semantics. Usually, this is appropriate, but there are situations where you may want
to change this:

® |f you use structures as members of a collection, each access to an element of the collection incurs the cost of boxing or unboxing.
Depending on your situation, the performance penalty may be noticeable.
® On occasion, it is useful to be able to assign null to a structure, for example, to support "not there" semantics (such as when implementing
parameters that are conceptually optional).
To allow you to choose the correct performance and functionality trade-off, the Slice-to-C# compiler provides an alternative mapping of structures to
classes, for example:

Slice

["clr:class"] struct Point {
doubl e x;
doubl e y;

I

The "cl r: cl ass" metadata directive instructs the Slice-to-C# compiler to generate a mapping to a C# partial class for this structure. The generated
code is almost identical, except that the keyword st r uct is replaced by the keyword cl ass and that the class has a default constructor and inherits
from | Cl oneabl e:

C#

public partial class Point : _System|d oneabl e

{

public double x;
public double y;

public Point();
public Point (doubl e x, double y);

public object done();

public override int GetHashCode();
public override bool Equal s(object other);

public static bool operator==(Point |hs, Point rhs);
public static bool operator!=(Point |hs, Point rhs);

@ Some of the generated marshaling code differs for the class mapping of structures, but this is irrelevant to application code.

The class has a default constructor that default-constructs each data member. This means members of primitive type are initialized to the equivalent
of zero, and members of reference type are initialized to null. Note that applications must always explicitly initialize a member whose type is a class-
mapped structure because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slic
e definition. The default constructor initializes each of these data members to its declared value.

The class also provides a second constructor that has one parameter for each data member. This allows you to construct and initialize a class
instance in a single statement:

C#

Point p = new Point(5.1, 7.8);

The C one method performs a shallow memberwise copy, and the comparison methods have the usual semantics (they perform value comparison).

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Structures
https://doc.zeroc.com/display/Ice34/Structures

Ice 3.4.2 Documentation

Note that you can influence the mapping for structures only at the point of definition of a structure, that is, for a particular structure type, you must
decide whether you want to use the structure or the class mapping. (You cannot override the structure mapping elsewhere, for example, for individual
structure members or operation parameters.)

As we mentioned previously, if a Slice structure (recursively) contains a member of reference type, it is automatically mapped to a C# class. (The
compiler behaves as if you had explicitly specified the " cl r : cl ass" metadata directive for the structure.)

Here is our Employee structure once more:

Slice

struct Enpl oyee {
| ong nunber;
string firstNang;
string | ast Nare;

}

The structure contains two strings, which are reference types, so the Slice-to-C# compiler generates a C# class for this structure:

Ct#
public partial class Enployee : _System | d oneabl e
{
public | ong nunber;
public string firstNane;
public string | astNane;
public Enpl oyee();
public Enpl oyee(l ong nunber, string firstName, string |astNane);
public object Cone();
public override int GetHashCode();
public override bool Equal s(object other);
public static bool operator==(Enpl oyee | hs, Enployee rhs);
public static bool operator!=(Enployee |hs, Enployee rhs);
}

Property Mapping for Structures in C#
You can instruct the compiler to emit property definitions instead of public data members. For example:

Slice

["clr:property"] struct Point {
doubl e x;
doubl e y;

s

The "cl r: property" metadata directive causes the compiler to generate a property for each Slice data member:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Dictionaries

Ice 3.4.2 Documentation

C#

public partial struct Point

{
private double x_prop;
public double x {
get {
return x_prop;
}
set {
x_prop = val ue;
}
}
private double y_prop;
public double y {
get {
return y_prop;
}
set {
y_prop = val ue;
}
}
/1 Other nethods here...
}

Note that the properties are non-virtual because C# structures cannot have virtual properties. However, if you apply the "cl r : property" directive
to a structure that contains a member of reference type, or if you combine the "cl r: property" and "cl r: cl ass" directives, the generated
properties are virtual. For example:

Slice

["clr:property", "clr:class"]
struct Point {

doubl e x;

doubl e vy;
b

This generates the following code:

Copyright © 2017, ZeroC, Inc.



Ice 3.4.2 Documentation

C#

public partial class Point : System|C oneabl e

{
private double x_prop;
public virtual double x {
get {
return x_prop;
}
set {
x_prop = val ue;
}
}
private double y_prop;
public virtual double y {
get {
return y_prop;
}
set {
y_prop = val ue;
}
}
/1 Other nethods here...
}
See Also

Metadata

C-Sharp Mapping for Identifiers
C-Sharp Mapping for Modules
C-Sharp Mapping for Built-In Types
C-Sharp Mapping for Enumerations
C-Sharp Mapping for Sequences
C-Sharp Mapping for Dictionaries
C-Sharp Collection Comparison
C-Sharp Mapping for Constants
C-Sharp Mapping for Exceptions

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice34/Metadata
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Identifiers
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Modules
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Enumerations
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Sequences
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Dictionaries
https://doc.zeroc.com/display/Ice34/C-Sharp+Collection+Comparison
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Constants
https://doc.zeroc.com/display/Ice34/C-Sharp+Mapping+for+Exceptions

	C-Sharp Mapping for Structures

