Constants and Literals

On this page:

Allowable Types for Constants

Slice allows you to define constants for the following types:

Here are a few examples:

module M
    const bool      AppendByDefault = true;
    const byte      LowerNibble = 0x0f;
    const string    Advice = "Don't Panic!";
    const short     TheAnswer = 42;
    const double    PI = 3.1416;

    enum Fruit { Apple, Pear, Orange }
    const Fruit     FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor exceptions).

Boolean constants

Boolean constants can only be initialized with the keywords false and true. (You cannot use 0 and 1 to represent false and true.)

Integer literals

Integer literals can be specified in decimal, octal, or hexadecimal notation.

For example:

const byte TheAnswer = 42;
const byte TheAnswerInOctal = 052;
const byte TheAnswerInHex = 0x2A;       // or 0x2a

Be aware that, if you interpret byte as a number instead of a bit pattern, you may get different results in different languages. For example, for C++, byte maps to unsigned char whereas, for Java, byte maps to byte, which is a signed type.

Note that suffixes to indicate long and unsigned constants (l, L, u, U, used by C++) are illegal:

const long Wrong = 0u;          // Syntax error
const long WrongToo = 1000000L; // Syntax error

The value of an integer literal must be within the range of its constant type, as shown in the Built-In Basic Types table; otherwise the compiler will issue a diagnostic.

Floating-point literals

Floating-point literals use C++ syntax, except that you cannot use an l or L suffix to indicate an extended floating-point constant; however, f and F are legal (but are ignored).

Here are a few examples:

const float P1 = -3.14f;    // Integer & fraction, with suffix
const float P2 = +3.1e-3;   // Integer, fraction, and exponent
const float P3 = .1;        // Fraction part only
const float P4 = 1.;        // Integer part only
const float P5 = .9E5;      // Fraction part and exponent
const float P6 = 5e2;       // Integer part and exponent

Floating-point literals must be within the range of the constant type (float or double); otherwise, the compiler will issue a diagnostic.

String literals

Slice string literals support the same escape sequences as C++, with the exception of hexadecimal escape sequences that are limited to two hexadecimal digits. 

Escape SequenceNameCorresponding ASCII or
Unicode Code Point
\'single quote0x27 
\"double quote0x22 
\?question mark0x3f 
\aaudible bell0x07 
\fform feed0x0c 
\nline feed0x0a 
\rcarriage return0x0d 
\thorizontal tab0x09 
\vvertical tab0x0b 
\nnnoctal escape sequence 1 to 3 octal digits (0-7) that represent a byte value between 0 and 255
\xnnhexadecimal escape sequence 1 to 2 hexadecimal digits (0-9, a-f, A-F)
\unnnnuniversal character nameU+nnnn

Exactly 4 hexadecimal digits.

Use the \Unnnnnnnn notation for astral characters.

\Unnnnnnnnuniversal character name


Exactly 8 hexadecimal digits.

A backslash (\) followed by another character is simply preserved as is.

Octal and hexadecimal escape sequences can represent ASCII characters (ordinal value 0 to 127) or the UTF-8 encoding of non-ASCII characters.

A string literal can contain printable ASCII characters (including the escape sequences presented above) and non-ASCII characters; non-printable ASCII characters (such as an unescaped tab) are not allowed.

Here are some examples:

const string AnOrdinaryString = "Hello World!";

const string DoubleQuote =      "\"";
const string TwoSingleQuotes =  "'\'";     // ' and \' are OK
const string QuestionMark =     "\?";
const string Backslash =        "\\";
const string AudibleBell =      "\a";
const string Backspace =        "\b";
const string FormFeed =         "\f";
const string Newline =          "\n";
const string CarriageReturn =   "\r";
const string HorizontalTab =    "\t";
const string VerticalTab =      "\v";

const string OctalEscape =    "\007";     // Same as \a
const string HexEscape1  =    "\x07";     // Ditto
const string HexEscape2 =     "\x41F";    // Same as AF 
const string Universal1 =     "\u0041";   // Same as A
const string Universal2 = "\U00000041";   // Ditto
const string EuroSign1 =           "€";   // Euro sign (U+20AC)
const string EuroSign2 =      "\u20AC";   // Euro sign as a short universal character name
const string EuroSign3 =  "\U000020ac";   // Euro sign as a long universal character name
const string EuroSign4 = "\xe2\x82\xAC";  // Euro sign in UTF-8 encoding, using hex escape sequences
const string EuroSign5 = "\342\202\254";  // Euro sign in UTF-8 encoding, using octal escape sequences
const string EuroSign6 = "\342\x82\254";  // Euro sign in UTF-8 encoding, using a mix or hex and octal escape sequences
const string NullString = null;    // Illegal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal value for a string anywhere in the Ice platform. The reason for this decision is that null strings do not exist in many programming languages.

Constant Expressions

A constant definition may also refer to another constant. It is not necessary for both constants to have the same Slice type, but the value of the existing constant must be compatible with the type of the constant being defined.

Consider the examples below:

const int SIZE = 500;

const int DEFAULT_SIZE = SIZE; // OK
const short SHORT_SIZE = SIZE; // OK
const byte BYTE_SIZE = SIZE;   // ERROR

The DEFAULT_SIZE constant is legal because it has the same type as SIZE, and SHORT_SIZE is legal because the value of SIZE (500) is within the range of the Slice short type. However, BYTE_SIZE is illegal because the value of SIZE is outside the range of the byte type.

See Also