Ice 3.5.1 Documentation

Using Cookies with Servant Locators

Occasionally, it can be useful for a servant locator to pass information between | ocat e and f i ni shed. For example, the implementation of | ocat e
could choose among a number of alternative database backends, depending on load or availability and, to properly finalize state, the implementation
of f i ni shed might need to know which database was used by | ocat e. To support such scenarios, you can create a cookie in your | ocat e
implementation; the Ice run time passes the value of the cookie to f i ni shed after the operation invocation has completed. The cookie must derive
from | ce: : Local Qbj ect and can contain whatever state and member functions are useful to your implementation:

C++

class MyCookie : public virtual Ice::Local Object {
public:
/1 \Whatever is useful here...

b
typedef IceUtil::Handl e<MyCooki e> MyCooki ePtr;

class MyServantLocator : public virtual Ice:: ServantLocator {

public:
virtual lce::QojectPtr |locate(const lce::Current& c, |ce::Local CbjectPtré& cookie)
{
/| Code as before...
/1 Allocate and initialize a cookie.
/1
cookie = new MyCookie(...);
return new PhoneEntryl;
}

virtual void finished(const Ice::Current& c, const Ice::ObjectPtr& servant,
const lce::Local ObjectPtr& cookie)

{
/| Down-cast cookie to actual type.
/1
My Cooki ePtr nc = MyCooki ePtr:: dynam cCast (cooki e);
/1 Use information in cookie to clean up...
/1
/1

}

virtual void deactivate(const std::string& category);

b
See Also

® Servant Locators

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Servant+Locators

	Using Cookies with Servant Locators

