Ice 3.4.2 Documentation

The C++ Handle Template Adaptors

I ceUtil provides adaptors that support use of smart pointers with STL algorithms. Each template function returns a corresponding function object
that is for use by an STL algorithm. The adaptors are defined in the header | ceUti | / Functi onal . h.

Here is a list of the adaptors:

menfun
menfunl

voi dMenfun
voi dMenfunl

secondMenfun
secondMenfunl
secondVoi dMenfun
secondVoi dMenfunl

const Menfun
const MenfFunl
const Voi dMenfun
const Voi dMenfunl

secondConst Menfun
secondConst MenfFunl
secondConst Voi dMenfun
secondConst Voi dMvenfFunl

As you can see, the adaptors are in two groups. The first group operates on non-const smart pointers, whereas the second group operates on const
smart pointers (for example, on smart pointers declared as const MyCl assPtr).

Each group is further divided into two sub-groups. The adaptors in the first group operate on the target of a smart pointer, whereas the second<nane:
adapters operate on the second element of a pair, where that element is a smart pointer.

Each of the four sub-groups contains four adaptors:
menfun

This adaptor is used for member functions that return a value and do not accept an argument. For example:

C++

class MyClass : public lIceltil::Shared {

public:
MWd ass(int i) : _i(i) {}
int getval() { return _i; }
private:
int _i;
i

typedef IceUtil::Handl e<Md ass> My assPtr;
/1

vect or <Myd assPtr> ntp;
ncp. push_back(new MyCl ass(42));
ntp. push_back(new MyC ass(99));

transform(ncp. begi n(), ncp.end(),
ostream.iterator<int>(cout, " "),
lceltil::menFun(&WUd ass: :getVal));
cout << endl;

This code invokes the member function get Val on each instance that is pointed at by smart pointers in the vector ncp and prints the return value of g
et Val on cout, separated by spaces. The output from this code is:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=5047934

Ice 3.4.2 Documentation

42 99

menfFunl

This adaptor is used for member functions that return a value and accept a single argument. For example:

C++

class MyClass : public lIceltil::Shared {

public:

MWd ass(int i) : _i(i) {}

int plus(int v) { return _i + v; }
private:

int _i;
b

typedef IceUtil::Handl esMyd ass> MO assPtr;

/1

vect or <Myd assPtr> ntp;

ncp. push_back(new MyC ass(2));

mep. push_back(new M C ass(4));

ncp. push_back(new Myd ass(6));

int AL3] ={ 5 7, 91};

transform(ncp. begin(), ntp.end(), A
ostream.iterator<int>(cout, " "),

lceltil::menFunl(&Wd ass::plus));
cout << endl;

This code invokes the member function pl us on each instance that is pointed at by smart pointers in the vector ntp and prints the return value of a
call to pl us on cout , separated by spaces. The calls to pl us are successively passed the values stored in the array A. The output from this code is:

7 11 15

voi dMenfun

This adaptor is used for member functions that do not return a value and do not accept an argument. For example:

C++

class MyClass : public lIceltil::Shared {

public:

MWd ass(int i) : _i(i) {}

void print() { cout << _i << endl; }
private:

int _i;
b

typedef IceUtil::Handl esMyd ass> MO assPtr;
/1

vect or <Myd assPtr> ntp;

ncp. push_back(new MyC ass(2));

ncp. push_back(new MyC ass(4));

ncp. push_back(new Myd ass(6));

for_each(ncp. begin(), ntp.end(), lceUtil::voi dMenFun(&WC ass::print));

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

This code invokes the member function pri nt on each instance that is pointed at by smart pointers in the vector ncp. The output from this code is:

H

voi dMenfunl

This adaptor is used for member functions that do not return a value and accept a single argument. For example:

C++

class MyCass : public lIceltil::Shared {

public:

M dass(int i) : _i(i) {}

void printPlus(int v) { cout << _i + v << endl; }
private:

int _i;
b

typedef IlceUtil::Handl esMd ass> MO assPtr;

vect or <MyC assPtr> ntp;

ncp. push_back(new Myd ass(2));
ncp. push_back(new Myd ass(4));
ntp. push_back(new MyC ass(6));

for_each(
ncp. begin(), ncp.end(),
bi nd2nd(1ceUtil::voi dMenFunl(&Wd ass::printPlus), 3));

This code invokes the member function pri nt Pl us on each instance that is pointed at by smart pointers in the vector ncp. The output from this
code is:

~

As mentioned earlier, the second<namne> versions of the adaptors operate on the second element of a st d: : pai r <T1, T2>, where T2 must be a
smart pointer. Most commonly, these adaptors are used to apply an algorithm to each lookup value of a map or multi-map. Here is an example:

Copyright © 2017, ZeroC, Inc.

C++

class MyClass : public lIceltil:: Shared {

public:
MWd ass(int i) : _i(i) {}
int plus(int v) { return _i
private:
int _i;

}s

+v;}

Ice 3.4.2 Documentation

typedef IceUtil::Handl esMyd ass> MO assPtr;

/1

map<string, MyCassPtr> m
nf"two"] = new Myd ass(2);
nf"four"] = new Myd ass(4);
nf"six"] = new My ass(6);

int A{3] ={ 5, 7, 91};
transform
m begin(), mend(), A
ostream.terator<int>(cout,
lceltil::secondMenfunl<int,

)

string,

MW ass>(&W0C ass: :plus));

This code invokes the pl us member function on the class instance denoted by the second smart pointer member of each pair in the dictionary m

The output from this code is:

9 13 11

Note that secondMenfunl is a template that requires three arguments: the return type of the member function to be invoked, the key type of the
dictionary, and the type of the class that is pointed at by the smart pointer.

In general, the second<nane> adaptors require the following template arguments:

C++

secondMenfFun<R, K, T>
secondMenfunl<R, K, T>
secondVoi dMenfun<K, T>
secondVoi dMenfFun<K, T>

where Ris the return type of the member function, K is the type of the first member of the pair, and T is the class that contains the member function.

See Also

® The C++ Handle Template

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=5047934

	The C++ Handle Template Adaptors

