Ice 3.5.1 Documentation

Programming IceSSL in C++

This page describes the C++ API for the IceSSL plug-in.

On this page:

The IceSSL Plugin Interface in C++
Obtaining SSL Connection Information in C++
Installing a Certificate Verifier in C++

Using Certificates in C++

Using Distinguished Names in C++

The IceSSL Plugin Interface in C++

Applications can interact directly with the IceSSL plug-in using the native C++ class | ceSSL: : Pl ugi n. A reference to a Pl ugi n object must be
obtained from the communicator in which the plug-in is installed:

C++
I ce:: Communi cator Ptr communi cator = //
I ce:: Pl ugi nManager Ptr pl ugi nMygr = communi cat or - >get Pl ugi nManager () ;

Ice::PluginPtr plugin = plugi nMyr->get Pl ugi n("l ceSSL");
I ceSSL:: PluginPtr sslPlugin = |ceSSL:: PluginPtr::dynam cCast (pl ugin);

The Pl ugi n class supports the following methods:

C++

nanespace | ceSSL

{
class Plugin : public Ice::Plugin
{
public:
virtual void setContext(SSL_CTX*) = 0;
virtual SSL_CTX* getContext() = O;
virtual void setCertificateVerifier(const CertificateVerifierPtr& = 0;
virtual void setPasswordPronpt(const PasswordPronptPtr& = O;
b
typedef IceUtil::Handl e<Pl ugi n> Pl uginPtr;
}

The set Cont ext and get Cont ext methods are rarely used in practice. The set Certi fi cat eVeri fi er method installs a custom certificate
verifier object that the plug-in invokes for each new connection. The set Passwor dPr onpt method provides an alternate way to supply lceSSL with
passwords. We discuss certificate verifiers below and revisit the other methods in our discussion of advanced IceSSL programming.

Obtaining SSL Connection Information in C++

You can obtain information about any SSL connection using the get | nf o operation on a Connect i on object. It returns an | ceSSL: :
Nat i veConnect i onl nf o class instance that derives from the Slice class | ceSSL: : Connect i onl nf 0. The Slice base class is defined as follows:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Advanced+IceSSL+Topics
https://doc.zeroc.com/display/Ice35/Using+Connections

Ice 3.5.1 Documentation

Slice

nmodul e Ice {
local class Connectionlnfo {
bool i ncom ng;
string adapter Nare;

1

| ocal class | PConnectionlnfo extends Connectionlnfo {
string | ocal Address;
int |ocal Port;
string renoteAddress;
int renotePort;
}
I

nodul e I ceSSL {
local class Connectionlnfo extends Ice::IPConnectionlnfo {
string cipher;
lce::StringSeq certs;
I
b

In turn, the C++ class Nat i veConnect i onl nf o is defined as follows:

C++

class NativeConnectionlnfo : public Connectionlnfo {
public:
std::vector<CertificatePtr> nativeCerts;

}

typedef IceUtil::Handl e<NativeConnectionl nfo> NativeConnectionlnfoPtr;

Installing a Certificate Verifier in C++

A new connection undergoes a series of verification steps before an application is allowed to use it. The low-level SSL engine executes certificate
validation procedures and, assuming the certificate chain is successfully validated, lceSSL performs additional verification as directed by its
configuration properties. Finally, if a certificate verifier is installed, IceSSL invokes it to provide the application with an opportunity to decide whether
to allow the connection to proceed.

The CertificateVerifier interface has only one method:

C++

nanespace | ceSSL

{

class CertificateVerifier : public Iceltil:: Shared

{
public:

virtual bool verify(const NativeConnectionlnfoPtr& = 0;
h
typedef IceUtil::Handl e<CertificateVerifier> CertificateVerifierPtr;
}

IceSSL rejects the connection if veri f y returns f al se, and allows it to proceed if the method returns t r ue. The veri f y method receives a Nat i ve
Connect i onl nf o object that describes the connection's attributes.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/IceSSL#IceSSL-PublicKeyInfrastructure
https://doc.zeroc.com/display/Ice35/IceSSL#IceSSL-PublicKeyInfrastructure
https://doc.zeroc.com/display/Ice35/Configuring+IceSSL#ConfiguringIceSSL-ConfiguringTrustRelationships

Ice 3.5.1 Documentation

The nat i veCert s member is a vector of certificates representing the peer's certificate chain. The vector is structured so that the first element is the
peer's certificate, followed by its signing certificates in the order they appear in the chain, with the root CA certificate as the last element. The vector is
empty if the peer did not present a certificate chain.

The ci pher member is a description of the ciphersuite that SSL negotiated for this connection. The local and remote address information is provided
in | ocal Addr ess and r enot eAddr ess, respectively.

@ A bug in Windows XP prevents IceSSL from obtaining the remote address information when using IPv6.

The i ncom ng member indicates whether the connection is inbound (a server connection) or outbound (a client connection). Finally, if i ncom ng is
true, the adapt er Nane member supplies the name of the object adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

C++

class Verifier : public IceSSL::CertificateVerifier

{
public:
bool verify(const |ceSSL:: NativeConnectionl nfo& info)
{
if (linfo.nativeCerts.enpty())
{
string dn = info.nativeCerts[0].getlssuerDN();
transform(dn. begin(), dn.end(), dn.begin(), ::tolower);
if (dn.find("zeroc") !'= string::npos)
{
return true;
}
}
return false;
}
}

In this example, the verifier rejects the connection unless the string zer oc is present in the issuer's distinguished name of the peer's certificate. In a
more realistic implementation, the application is likely to perform detailed inspection of the certificate chain.

Installing the verifier is a simple matter of calling set Certi fi cat eVerifi er on the plug-in interface:
C++

lceSSL:: PluginPtr sslPlugin =//
ssl Pl ugi n->set CertificateVerifier(new Verifier);

You should install the verifier before any SSL connections are established.

You can also install a certificate verifier using a custom plug-in to avoid making changes to the code of an existing application.

@ The Ice run time calls the ver i f y method during the connection-establishment process, therefore delays in the veri fy implementation
have a direct impact on the performance of the application. Do not make remote invocations from your implementation of veri fy.

Using Certificates in C++

The Connect i onl nf o class contains a vector of Cer ti f i cat e objects representing the peer's certificate chain. Cer ti fi cat e is a reference-
counted convenience class that hides the complexity of the underlying OpenSSL API. Its methods are inspired by the Java class X509Certi fi cate:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Advanced+IceSSL+Topics#AdvancedIceSSLTopics-UsingCustomPlug-inswithIceSSL

Ice 3.5.1 Documentation

C++

namespace | ceSSL

{

class Certificate : public IceUtil:: Shared

{
public:

Certificate(X509*);

static CertificatePtr |oad(const string&);
static CertificatePtr decode(const string&);

bool operator==(const Certificate& const;
bool operator!=(const Certificate& const;

Publ i cKeyPtr get Publ i cKey() const;
bool verify(const PublicKeyPtr&) const;
string encode() const;

bool checkValidity() const;
bool checkValidity(const IcelUtil::Tine& const;

lceUtil::Tinme getNot After() const;
IceUtil:: Tinme getNotBefore() const;

string getSerial Nunber () const;

Di sti ngui shedNane getlssuerDN() const;
vector<pair<int, string> > getlssuerAlternativeNanes();

Di sti ngui shedNane get Subj ect DN() const;
vector<pair<int, string> > getSubjectAlternativeNanes();

int getVersion() const;
string toString() const;

X509* getCert() const;
I
typedef IceUtil::Handl e<Certificate> CertificatePtr;
}

The more commonly-used methods are described below; refer to the documentation in | ceSSL/ Pl ugi n. h for information on the methods that are
not covered.

The static method | oad creates a certificate from the contents of a PEM-encoded file. If an error occurs, the function raises | ceSSL: :
Certificat eReadExcepti on; the reason member provides a description of the problem.

Use decode to obtain a certificate from a PEM-encoded string representing a certificate. The caller must be prepared to catch | ceSSL: :
Certificat eEncodi ngExcepti on if decode fails; the reason member provides a description of the problem.

The encode method creates a PEM-encoded string that represents the certificate. The return value can later be passed to decode to recreate the
certificate.

The checkVal i di t y methods determine whether the certificate is valid. The overloading with no arguments returns true if the certificate is valid at
the current time; the other overloading accepts an | ceUt i | : : Ti me object and returns true if the certificate is valid at the given time.

The get Not Af t er and get Not Bef or e methods return instances of | ceUt i | : : Ti ne that define the certificate's valid period.
The methods get | ssuer DN and get Subj ect DN supply the distinguished names of the certificate's issuer (i.e., the CA that signed the certificate)

and subject (i.e., the person or entity to which the certificate was issued). The methods return instances of the class | ceSSL: : Di st i ngui shedNane
, another convenience class that is described below.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=14680644

Ice 3.5.1 Documentation

Finally, the t oSt r i ng method returns a human-readable string describing the certificate.

Using Distinguished Names in C++

X.509 certificates use a distinguished name to identify a person or entity. The name is an ordered sequence of relative distinguished names that
supply values for fields such as common name, organization, state, and country. Distinguished names are commonly displayed in stringified form
according to the rules specified by RFC 2253, as shown in the following example:

C=US, ST=Florida, L=Pal mBeach Gardens, O="ZeroC, Inc.", OU=Servers, CN=Quote Server

Di sti ngui shedNane is a convenience class provided by IceSSL to simplify the tasks of parsing, formatting and comparing distinguished names.

C++

namespace | ceSSL

{

cl ass Distingui shedNanme

{

public:
Di sti ngui shedNane(const std::string&);
Di stingui shedNane(const std::list<std::pair<std::string, std::string> >&);
bool operator==(const Distingui shedNanme&) const;
bool operator!=(const Distingui shedNanme&) const;
bool operator<(const Distingui shedNane&) const;
bool match(const D stingui shedNanme&) const;
operator std::string() const;

b

}

The first overloaded constructor accepts a string argument representing a distinguished name encoded using the rules set forth in RFC 2253. The
new Di sti ngui shedNane instance preserves the order of the relative distinguished names in the string. The caller must be prepared to catch | ceS
SL: : Par seExcept i on if an error occurs during parsing.

The second overloaded constructor requires a list of type-value pairs representing the relative distinguished names. The new Di st i ngui shedNane
instance preserves the order of the relative distinguished names in the list.

The overloaded operator functions oper at or ==, oper at or ! =, and oper at or < perform an exact match of distinguished names in which the order
of the relative distinguished names is important. For two distinguished names to be equal, they must have the same relative distinguished names in
the same order.

The mat ch function performs a partial comparison that does not consider the order of relative distinguished names. If N1 and N2 are instances of Di s
ti ngui shedNane, N1. mat ch(N2) returns true if all of the relative distinguished names in N2 are present in N1.

Finally, the string conversion operator encodes the distinguished name in the format described by RFC 2253.

See Also

Using Connections
Public Key Infrastructure
Configuring IceSSL
Advanced IceSSL Topics

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Using+Connections
https://doc.zeroc.com/display/Ice35/IceSSL#IceSSL-PublicKeyInfrastructure
https://doc.zeroc.com/display/Ice35/Configuring+IceSSL
https://doc.zeroc.com/display/Ice35/Advanced+IceSSL+Topics

	Programming IceSSL in C++

