
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Datagram Invocations
On this page:

Design Considerations for Datagram Invocations
Creating Datagram Proxies

Design Considerations for Datagram Invocations
Datagram invocations are the equivalent of for datagram transports. As for oneway invocations, datagram invocations can be oneway invocations
sent only for operations that have a return type and do not have out-parameters or an exception specification. Attempts to use a datagram void
invocation with an operation that does not meet these criteria result in a . In addition, datagram invocations can only be TwowayOnlyException
used if the proxy's endpoints include at least one UDP transport; otherwise, the Ice run time throws a .NoEndpointException

The semantics of datagram invocations are similar to oneway invocations: no return traffic flows from the server to the client and proceed
asynchronously with respect to the client; a datagram invocation completes as soon as the client's transport has accepted the invocation into its
buffers. However, datagram invocations differ in one respect from oneway invocations in that datagram invocations optionally support multicast
semantics. Furthermore, datagram invocations have additional error semantics:

Individual invocations may be lost or received out of order.

On the wire, datagram invocations are sent as true datagrams, that is, individual datagrams may be lost, or arrive at the server out of order.
As a result, not only may operations be dispatched out of order, an individual invocation out of a series of invocations may be lost. (This
cannot happen for oneway invocations because, if a connection fails, invocations are lost once the connection breaks down.)all

UDP packets may be duplicated by the transport.

Because of the nature of UDP routing, it is possible for datagrams to arrive in duplicate at the server. This means that, for datagram
invocations, Ice does guarantee : if UDP datagrams are duplicated, the same invocation may be dispatched not at-most-once semantics
more than once in the server.

UDP packets are limited in size.

The maximum size of an IP datagram is 65,535 bytes. Of that, the IP header consumes 20 bytes, and the UDP header consumes 8 bytes,
leaving 65,507 bytes as the maximum payload. If the marshaled form of an invocation, including the Ice exceeds that size, request header
the invocation is lost. (Exceeding the size limit for a UDP datagram is indicated to the application by a .)DatagramLimitException

Because of their unreliable nature, datagram invocations are best suited to simple update messages that are otherwise stateless. In addition, due to
the high probability of loss of datagram invocations over wide area networks, you should restrict use of datagram invocations to local area networks,
where they are less likely to be lost. (Of course, regardless of the probability of loss, you must design your application such that it can tolerate lost or
duplicated messages.)

Creating Datagram Proxies
To invoke an operation as datagram, you must create a new proxy configured specifically for datagram invocations. The ice_datagram factory

 is provided for this purpose. The Slice definition of would look as follows:method ice_datagram

Slice

Object* ice_datagram();

We can call to create a oneway proxy and then use the proxy to invoke an operation as follows:ice_datagram

https://doc.zeroc.com/display/Ice34/Terminology#Terminology-DatagramInvocations
https://doc.zeroc.com/display/Ice34/Oneway+Invocations
https://doc.zeroc.com/display/Ice34/Terminology#Terminology-At-Most-OnceSemantics
https://doc.zeroc.com/display/Ice34/The+Ice+Protocol
https://doc.zeroc.com/display/Ice34/Proxy+Methods
https://doc.zeroc.com/display/Ice34/Proxy+Methods

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Get a datagram proxy.
//
Ice::ObjectPrx datagram;
try {
 datagram = o->ice_datagram();
} catch (const Ice::NoEndpointException&) {
 cerr << "No endpoint for datagram invocations" << endl;
}

// Down-cast to actual type.
//
PersonPrx datagramPerson = PersonPrx::uncheckedCast(datagram);

// Invoke an operation as a datagram.
//
try {
 datagramPerson->someOp();
} catch (const Ice::TwowayOnlyException&) {
 cerr << "someOp() is not oneway" << endl;
}

As for the , you can alternatively choose to first do a safe down-cast to the actual type of interface and then obtain the datagram oneway example
proxy, rather than relying on an unsafe down-cast, as shown above. However, doing so may be disadvantageous for two reasons:

Safe down-casts are sent via a stream-oriented transport. This means that using a safe down-cast will result in opening a connection for the
sole purpose of verifying that the target object has the correct type. This is expensive if all the other traffic to the object is sent via datagrams.
If the proxy does not offer a stream-oriented transport, the fails with a , so you can use this checkedCast NoEndpointException
approach only for proxies that offer both a UDP endpoint and a TCP/IP and/or SSL endpoint.

See Also

Terminology
Oneway Invocations
The Ice Protocol

https://doc.zeroc.com/display/Ice34/Oneway+Invocations
https://doc.zeroc.com/display/Ice34/Terminology
https://doc.zeroc.com/display/Ice34/Oneway+Invocations
https://doc.zeroc.com/display/Ice34/The+Ice+Protocol

	Datagram Invocations

