
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Terminology
Every computing technology creates its own vocabulary as it evolves. Ice is no exception. However, the amount of new jargon used by Ice is minimal.
Rather than inventing new terms, we have used existing terminology as much as possible. If you have used another middleware technology in the
past, you will be familiar with much of what follows. (However, we suggest you at least skim the material because a few terms used by Ice differ do
from the corresponding terms used by other middleware.)

On this page:

Clients and Servers
Ice Objects
Proxies
Stringified Proxies
Direct Proxies
Indirect Proxies
Direct Versus Indirect Binding
Fixed Proxies
Routed Proxies
Replication
Replica Groups
Servants
At-Most-Once Semantics
Synchronous Method Invocation
Asynchronous Method Invocation
Asynchronous Method Dispatch
Oneway Method Invocation
Batched Oneway Method Invocation
Datagram Invocations
Batched Datagram Invocations
Run-Time Exceptions
User Exceptions
Properties

Clients and Servers
The terms and are not firm designations for particular parts of an application; rather, they denote roles that are taken by parts of an client server
application for the duration of a request:

Clients are active entities. They issue requests for service to servers.
Servers are passive entities. They provide services in response to client requests.

Frequently, servers are not "pure" servers, in the sense that they never issue requests and only respond to requests. Instead, servers often act as a
server on behalf of some client but, in turn, act as a client to another server in order to satisfy their client's request.

Similarly, clients often are not "pure" clients, in the sense that they only request service from an object. Instead, clients are frequently client-server
hybrids. For example, a client might start a long-running operation on a server; as part of starting the operation, the client can provide a callback

 to the server that is used by the server to notify the client when the operation is complete. In that case, the client acts as a client when it starts object
the operation, and as a server when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client-server systems could be more accurately described as systems.peer-to-peer

Ice Objects
An is a conceptual entity, or abstraction. An Ice object can be characterized by the following points:Ice object

An Ice object is an entity in the local or a remote address space that can respond to client requests.
A single Ice object can be instantiated in a single server or, redundantly, in multiple servers. If an object has multiple simultaneous
instantiations, it is still a single Ice object.
Each Ice object has one or more . An interface is a collection of named that are supported by an object. Clients issue interfaces operations
requests by invoking operations.
An operation has zero or more as well as a . Parameters and return values have a specific . Parameters are parameters return value type
named and have a direction: in-parameters are initialized by the client and passed to the server; out-parameters are initialized by the server
and passed to the client. (The return value is simply a special out-parameter.)
An Ice object has a distinguished interface, known as its . In addition, an Ice object can provide zero or more alternate main interface
interfaces, known as . Clients can select among the facets of an object to choose the interface they want to work with.facets
Each Ice object has a unique . An object's identity is an identifying value that distinguishes the object from all other objects. object identity
The Ice object model assumes that object identities are globally unique, that is, no two objects within an Ice communication domain can
have the same object identity.

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.
3.
4.
5.
6.

In practice, you need not use object identities that are globally unique, such as , only identities that do not clash with any other identity UUIDs
within your domain of interest. However, there are architectural advantages to using globally unique identifiers, which we explore in our
discussion of .object life cycle

Proxies
For a client to be able to contact an Ice object, the client must hold a for the Ice object. A is an artifact that is local to the client's address proxy proxy
space; it represents the (possibly remote) Ice object for the client. A proxy acts as the local ambassador for an Ice object: when the client invokes an
operation on the proxy, the Ice run time:

Locates the Ice object
Activates the Ice object's server if it is not running
Activates the Ice object within the server
Transmits any in-parameters to the Ice object
Waits for the operation to complete
Returns any out-parameters and the return value to the client (or throws an exception in case of an error)

A proxy encapsulates all the necessary information for this sequence of steps to take place. In particular, a proxy contains:

Addressing information that allows the client-side run time to contact the correct server
An object identity that identifies which particular object in the server is the target of a request
An optional facet identifier that determines which particular facet of an object the proxy refers to

Stringified Proxies
The information in a proxy can be expressed as a string. For example, the string:

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls that allow you to convert a proxy to its stringified form and vice
versa. This is useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing information, it can create a proxy "out of thin air" by supplying that
information. In other words, no part of the information inside a proxy is considered opaque; a client needs to know only an object's identity,
addressing information, and (to be able to invoke an operation) the object's type in order to contact the object.

Direct Proxies
A is a proxy that embeds an object's identity, together with the address at which its server runs. The address is completely specified by:direct proxy

a protocol identifier (such TCP/IP or UDP)
a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the addressing information in the proxy to contact the server; the identity of the
object is sent to the server with each request made by the client.

Indirect Proxies
An has two forms. It may provide only an object's identity, or it may specify an identity together with an object adapter identifier. An indirect proxy
object that is accessible using only its identity is called a well-known object. For example, the string:

SimplePrinter

is a valid proxy for a well-known object with the identity .SimplePrinter

An indirect proxy that includes an object adapter identifier has the stringified form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of whether that object is also a well-known object.

http://www.wikipedia.org/wiki/Uuid
https://doc.zeroc.com/display/Ice34/Object+Life+Cycle
https://doc.zeroc.com/display/Ice34/Proxies

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Notice that an indirect proxy contains no addressing information. To determine the correct server, the client-side run time passes the proxy
information to a . In turn, the location service uses the object identity or the object adapter identifier as the key in a lookup table that location service
contains the address of the server and returns the current server address to the client. The client-side run time now knows how to contact the server
and dispatches the client request as usual.

The entire process is similar to the mapping from Internet domain names to IP address by the Domain Name Service (DNS): when we use a domain
name, such as , to look up a web page, the host name is first resolved to an IP address behind the scenes and, once the correct IP www.zeroc.com
address is known, the IP address is used to connect to the server. With Ice, the mapping is from an object identity or object adapter identifier to a
protocol-address pair, but otherwise very similar. The client-side run time knows how to contact the location service via configuration (just as web
browsers know which DNS server to use via configuration).

Direct Versus Indirect Binding
The process of resolving the information in a proxy to protocol-address pair is known as . Not surprisingly, is used for direct binding direct binding
proxies, and is used for indirect proxies.indirect binding

The main advantage of indirect binding is that it allows us to move servers around (that is, change their address) without invalidating existing proxies
that are held by clients. In other words, direct proxies avoid the extra lookup to locate the server but no longer work if a server is moved to a different
machine. On the other hand, indirect proxies continue to work even if we move (or) a server.migrate

Fixed Proxies
A is a proxy that is bound to a particular connection: instead of containing addressing information or an adapter name, the proxy contains fixed proxy
a connection handle. The connection handle stays valid only for as long as the connection stays open so, once the connection is closed, the proxy no
longer works (and will never work again). Fixed proxies cannot be marshaled, that is, they cannot be passed as parameters on operation invocations.
Fixed proxies are used to allow , so a server can make callbacks to a client without having to open a new connection.bidirectional communication

Routed Proxies
A is a proxy that forwards all invocations to a specific target object, instead of sending invocations directly to the actual target. Routed routed proxy
proxies are useful for implementing services such as , which enables clients to communicate with servers that are behind a firewall.Glacier2

Replication
In Ice, involves making object adapters (and their objects) available at multiple addresses. The goal of replication is usually to provide replication
redundancy by running the same server on several computers. If one of the computers should happen to fail, a server still remains available on the
others.

The use of replication implies that applications are designed for it. In particular, it means a client can access an object via one address and obtain the
same result as from any other address. Either these objects are stateless, or their implementations are designed to synchronize with a database (or
each other) in order to maintain a consistent view of each object's state.

Ice supports a limited form of replication when a proxy specifies multiple addresses for an object. The Ice run time selects one of the addresses at
random for its and tries all of them in the case of a failure. For example, consider this proxy:initial connection attempt

SimplePrinter:tcp -h server1 -p 10001:tcp -h server2 -p 10002

The proxy states that the object with identity is available using TCP at two addresses, one on the host and another on SimplePrinter server1
the host . The burden falls to users or system administrators to ensure that the servers are actually running on these computers at the server2
specified ports.

Replica Groups
In addition to the proxy-based replication described above, Ice supports a more useful form of replication known as that requires the replica groups
use of a .location service

A replica group has a unique identifier and consists of any number of object adapters. An object adapter may be a member of at most one replica
group; such an adapter is considered to be a .replicated object adapter

After a replica group has been established, its identifier can be used in an indirect proxy in place of an adapter identifier. For example, a replica group
identified as can be used in a proxy as shown below:PrinterAdapters

https://doc.zeroc.com/display/Ice34/Locators
https://doc.zeroc.com/display/Ice34/Bidirectional+Connections
https://doc.zeroc.com/display/Ice34/Glacier2
https://doc.zeroc.com/display/Ice34/Connection+Establishment
https://doc.zeroc.com/display/Ice34/Locators

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

SimplePrinter@PrinterAdapters

The replica group is treated by the location service as a "virtual object adapter." The behavior of the location service when resolving an indirect proxy
containing a replica group id is an implementation detail. For example, the location service could decide to return the addresses of all object adapters
in the group, in which case the client's Ice run time would select one of the addresses at random using the limited form of replication discussed
earlier. Another possibility is for the location service to return only one address, which it decided upon using some heuristic.

Regardless of the way in which a location service resolves a replica group, the key benefit is indirection: the location service as a middleman can add
more intelligence to the binding process.

Servants
As we mentioned, an is a conceptual entity that has a type, identity, and addressing information. However, client requests ultimately must Ice Object
end up with a concrete server-side processing entity that can provide the behavior for an operation invocation. To put this differently, a client request
must ultimately end up executing code inside the server, with that code written in a specific programming language and executing on a specific
processor.

The server-side artifact that provides behavior for operation invocations is known as a . A servant provides substance for (or) one servant incarnates
or more Ice objects. In practice, a servant is simply an instance of a class that is written by the server developer and that is registered with the server-
side run time as the servant for one or more Ice objects. Methods on the class correspond to the operations on the Ice object's interface and provide
the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice objects simultaneously. If the former, the identity of the Ice object incarnated
by the servant is implicit in the servant. If the latter, the servant is provided the identity of the Ice object with each request, so it can decide which
object to incarnate for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we might choose to create a proxy for an Ice object with two different
addresses for different machines. In that case, we will have two servers, with each server containing a servant for the same Ice object. When a client
invokes an operation on such an Ice object, the client-side run time sends the request to exactly one server. In other words, multiple servants for a
single Ice object allow you to build redundant systems: the client-side run time attempts to send the request to one server and, if that attempt fails,
sends the request to the second server. An error is reported back to the client-side application code only if that second attempt also fails.

At-Most-Once Semantics
Ice requests have semantics: the Ice run time does its best to deliver a request to the correct destination and, depending on the exact at-most-once
circumstances, may retry a failed request. Ice guarantees that it will either deliver the request, or, if it cannot deliver the request, inform the client with
an appropriate exception; under no circumstances is a request delivered twice, that is, retries are attempted only if it is known that a previous attempt
definitely failed.

At-most-once semantics are important because they guarantee that operations that are not can be used safely. An idempotent operation idempotent
is an operation that, if executed twice, has the same effect as if executed once. For example, is an idempotent operation: if we execute the x = 1;
operation twice, the end result is the same as if we had executed it once. On the other hand, is not idempotent: if we execute the operation x++;
twice, the end result is not the same as if we had executed it once.

Without at-most-once semantics, we can build distributed systems that are more robust in the presence of network failures. However, realistic
systems require non-idempotent operations, so at-most-once semantics are a necessity, even though they make the system less robust in the
presence of network failures. Ice permits you to mark individual operations as idempotent. For such operations, the Ice run time uses a more
aggressive error recovery mechanism than for non-idempotent operations.

Synchronous Method Invocation
By default, the request dispatch model used by Ice is a synchronous remote procedure call: an operation invocation behaves like a local procedure
call, that is, the client thread is suspended for the duration of the call and resumes when the call completes (and all its results are available).

Asynchronous Method Invocation
Ice also supports : clients can invoke operations , that is, the client uses a proxy as usual to asynchronous method invocation (AMI) asynchronously
invoke an operation but, in addition to passing the normal parameters, also passes a and the client invocation returns immediately. callback object
Once the operation completes, the client-side run time invokes a method on the callback object passed initially, passing the results of the operation to
the callback object (or, in case of failure, passing exception information).

One exception to this rule are datagram invocations over UDP transports. For these, duplicated UDP packets can lead to a violation of at-
most-once semantics.

Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

The server cannot distinguish an asynchronous invocation from a synchronous one — either way, the server simply sees that a client has invoked an
operation on an object.

Asynchronous Method Dispatch
Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For synchronous dispatch (the default), the server-side run time up-calls
into the application code in the server in response to an operation invocation. While the operation is executing (or sleeping, for example, because it is
waiting for data), a thread of execution is tied up in the server; that thread is released only when the operation completes.

With asynchronous method dispatch, the server-side application code is informed of the arrival of an operation invocation. However, instead of being
forced to process the request immediately, the server-side application can choose to delay processing of the request and, in doing so, releases the
execution thread for the request. The server-side application code is now free to do whatever it likes. Eventually, once the results of the operation are
available, the server-side application code makes an API call to inform the server-side Ice run time that a request that was dispatched previously is
now complete; at that point, the results of the operation are returned to the client.

Asynchronous method dispatch is useful if, for example, a server offers operations that block clients for an extended period of time. For example, the
server may have an object with a operation that returns data from an external, asynchronous data source and that blocks clients until the data get
becomes available. With synchronous dispatch, each client waiting for data to arrive ties up an execution thread in the server. Clearly, this approach
does not scale beyond a few dozen clients. With asynchronous dispatch, hundreds or thousands of clients can be blocked in the same operation
invocation without tying up any threads in the server.

Another way to use asynchronous method dispatch is to complete an operation, so the results of the operation are returned to the client, but to keep
the execution thread of the operation beyond the duration of the operation invocation. This allows you to continue processing after results have been
returned to the client, for example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client, that is, the client cannot tell whether a server chose to process a
request synchronously or asynchronously.

Oneway Method Invocation
Clients can invoke an operation as a operation. A oneway invocation has "best effort" semantics. For a oneway invocation, the client-side run oneway
time hands the invocation to the local transport, and the invocation completes on the client side as soon as the local transport has buffered the
invocation. The actual invocation is then sent asynchronously by the operating system. The server does not reply to oneway invocations, that is,
traffic flows only from client to server, but not vice versa.

Oneway invocations are unreliable. For example, the target object may not exist, in which case the invocation is simply lost. Similarly, the operation
may be dispatched to a servant in the server, but the operation may fail (for example, because parameter values are invalid); if so, the client receives
no notification that something has gone wrong.

Oneway invocations are possible only on that do not have a return value, do not have out-parameters, and do not throw user exceptions.operations

To the application code on the server-side, oneway invocations are transparent, that is, there is no way to distinguish a twoway invocation from a
oneway invocation.

Oneway invocations are available only if the target object offers a stream-oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented transport, they may be processed out of order in the server. This can
happen because each invocation may be dispatched in its own thread: even though the invocations are in the order in which the invocations initiated
arrive at the server, this does not mean that they will be in that order — the vagaries of thread scheduling can result in a oneway processed
invocation completing before other oneway invocations that were received earlier.

Batched Oneway Method Invocation
Each oneway invocation sends a separate message to the server. For a series of short messages, the overhead of doing so is considerable: the
client- and server-side run time each must switch between user mode and kernel mode for each message and, at the networking level, each
message incurs the overheads of flow-control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations as a single message: every time you invoke a batched oneway
operation, the invocation is buffered in the client-side run time. Once you have accumulated all the oneway invocations you want to send, you make a
separate API call to send all the invocations at once. The client-side run time then sends all of the buffered invocations in a single message, and the
server receives all of the invocations in a single message. This avoids the overhead of repeatedly trapping into the kernel for both client and server,
and is much easier on the network between them because one large message can be transmitted more efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a single thread in the order in which they were placed into the batch. This
guarantees that the individual operations in a batched oneway message are processed in order in the server.

Batched oneway invocations are particularly useful for messaging services, such as , and for fine-grained interfaces that offer IceStorm set
operations for small attributes.

https://doc.zeroc.com/display/Ice34/Operations
https://doc.zeroc.com/display/Ice34/IceStorm

Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

Datagram Invocations
Datagram invocations have "best effort" semantics similar to oneway invocations. However, datagram invocations require the object to offer UDP as
a transport (whereas oneway invocations require TCP/IP).

Like a oneway invocation, a datagram invocation can be made only if the operation does not have a return value, out-parameters, or user exceptions.
A datagram invocation uses UDP to invoke the operation. The operation returns as soon as the local UDP stack has accepted the message; the
actual operation invocation is sent asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not exist in the server, the server may not be running, or the operation may
be invoked in the server but fail due to invalid parameters sent by the client. As for oneway invocations, the client receives no notification of such
errors.

However, unlike oneway invocations, datagram invocations have a number of additional error scenarios:

Individual invocations may simply be lost in the network.
This is due to the unreliable delivery of UDP packets. For example, if you invoke three operations in sequence, the middle invocation may
be lost. (The same thing cannot happen for oneway invocations — because they are delivered over a connection-oriented transport,
individual invocations cannot be lost.)

Individual invocations may arrive out of order.
Again, this is due to the nature of UDP datagrams. Because each invocation is sent as a separate datagram, and individual datagrams can
take different paths through the network, it can happen that invocations arrive in an order that differs from the order in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the likelihood of loss is small. They are also suited to situations in which
low latency is more important than reliability, such as for fast, interactive internet applications. Finally, datagram invocations can be used to multicast
messages to multiple servers simultaneously.

Batched Datagram Invocations
As for batched oneway invocations, allow you to accumulate a number of invocations in a buffer and then send the batched datagram invocations
entire buffer as a single datagram by making an API call to flush the buffer. Batched datagrams reduce the overhead of repeated system calls and
allow the underlying network to operate more efficiently. However, batched datagram invocations are useful only for batched messages whose total
size does not substantially exceed the PDU limit of the network: if the size of a batched datagram gets too large, UDP fragmentation makes it more
likely that one or more fragments are lost, which results in the loss of the entire batched message. However, you are guaranteed that either all
invocations in a batch will be delivered, or none will be delivered. It is impossible for individual invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual invocations in a batch. This guarantees that the invocations are made
in the order in which they were queued — invocations cannot appear to be reordered in the server.

Run-Time Exceptions
Any operation invocation can raise a . Run-time exceptions are pre-defined by the Ice run time and cover common error run-time exception
conditions, such as connection failure, connection timeout, or resource allocation failure. Run-time exceptions are presented to the application as
native exceptions and so integrate neatly with the native exception handling capabilities of languages that support exception handling.

User Exceptions
A server indicates application-specific error conditions by raising to clients. User exceptions can carry an arbitrary amount of complex user exceptions
data and can be arranged into inheritance hierarchies, which makes it easy for clients to handle categories of errors generically, by catching an
exception that is further up the inheritance hierarchy. Like run-time exceptions, user exceptions map to native exceptions.

Properties
Much of the Ice run time is configurable via . Properties are name-value pairs, such as . Properties are properties Ice.Default.Protocol=tcp
typically stored in text files and parsed by the Ice run time to configure various options, such as the thread pool size, the level of tracing, and various
other configuration parameters.

See Also

The Slice Language
Proxies
Locators
Object Life Cycle
Bidirectional Connections

https://doc.zeroc.com/display/Ice34/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice34/User+Exceptions
https://doc.zeroc.com/display/Ice34/Properties+and+Configuration
https://doc.zeroc.com/display/Ice34/The+Slice+Language
https://doc.zeroc.com/display/Ice34/Proxies
https://doc.zeroc.com/display/Ice34/Locators
https://doc.zeroc.com/display/Ice34/Object+Life+Cycle
https://doc.zeroc.com/display/Ice34/Bidirectional+Connections

Ice 3.4.2 Documentation

7 Copyright © 2017, ZeroC, Inc.

Glacier2
IceStorm

https://doc.zeroc.com/display/Ice34/Glacier2
https://doc.zeroc.com/display/Ice34/IceStorm

	Terminology

