
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Classes with Operations
Classes, in addition to data members, can have operations. The syntax for operation definitions in classes is identical to the syntax for operations in
interfaces. For example, we can modify the expression tree from as follows:Self-Referential Classes

Slice

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {
 idempotent long eval();
};

class UnaryOperator extends Node {
 UnaryOp operator;
 Node operand;
};

class BinaryOperator extends Node {
 BinaryOp op;
 Node operand1;
 Node operand2;
};

class Operand {
 long val;
};

The only change compared to the version in is that the class now has an operation. The semantics of this are as Self-Referential Classes Node eval
for a virtual member function in C++: each derived class inherits the operation from its base class and can choose to override the operation's
definition. For our expression tree, the class provides an implementation that simply returns the value of its member, and the Operand val UnaryOp

 and classes provide implementations that compute the value of their respective subtrees. If we call on the root erator BinaryOperator eval
node of an expression tree, it returns the value of that tree, regardless of whether we have a complex expression or a tree that consists of only a
single node.Operand

Operations on classes are normally executed in the caller's address space, that is, operations on classes are operations that do not result in a local
remote procedure call.

Of course, this immediately raises an interesting question: what happens if a client receives a class instance with operations from a server, but client
and server are implemented in different languages? Classes with operations require the receiver to supply a factory for instances of the class. The
Ice run time only marshals the data members of the class. If a class has operations, the receiver of the class must provide a class factory that can
instantiate the class in the receiver's address space, and the receiver is responsible for providing an implementation of the class's operations.

Therefore, if you use classes with operations, it is understood that client and server each have access to an implementation of the class's operations.
No code is shipped over the wire (which, in an environment of heterogeneous nodes using different operating systems and languages is infeasible).

See Also

Self-Referential Classes
Pass-by-Value Versus Pass-by-Reference

It is also possible to invoke an operation on a .remote class instance

https://doc.zeroc.com/display/Ice34/Self-Referential+Classes
https://doc.zeroc.com/display/Ice34/Self-Referential+Classes
https://doc.zeroc.com/display/Ice34/Self-Referential+Classes
https://doc.zeroc.com/display/Ice34/Pass-by-Value+Versus+Pass-by-Reference
https://doc.zeroc.com/display/Ice34/Pass-by-Value+Versus+Pass-by-Reference

	Classes with Operations

