Ice 3.5.1 Documentation

Obtaining Proxies

This page describes the ways an application can obtain a proxy.

On this page:

Obtaining a Proxy from a String
Obtaining a Proxy from Properties
Obtaining a Proxy using Factory Methods
Obtaining a Proxy by Invoking Operations

Obtaining a Proxy from a String
The communicator operation st ri ngToPr oxy creates a proxy from its stringified representation, as shown in the following C++ example:
C++

Ice::ObjectPrx p = comunicator->stringToProxy("ident:tcp -p 5000");

Obtaining a Proxy from Properties

Rather than hard-coding a stringified proxy as the previous example demonstrated, an application can gain more flexibility by externalizing the proxy
in a configuration property. For example, we can define a property that contains our stringified proxy as follows:

MyApp. Proxy=ident:tcp -p 5000

We can use the communicator operation pr oper t yToPr oxy to convert the property's value into a proxy, as shown below in Java:

Java

Ice. ObjectPrx p = commruni cator. propertyToProxy(" M/App. Proxy");

As an added convenience, pr oper t yToPr oxy allows you to define subordinate properties that configure the proxy's local settings. The properties
below demonstrate this feature:

MyApp. Proxy=ident:tcp -p 5000
My App. Proxy. Pref er Secur e=1
M/ App. Proxy. Endpoi nt Sel ecti on=Cr der ed

These additional properties simplify the task of customizing a proxy (as you can with proxy methods) without the need to change the application's
code. The properties shown above are equivalent to the following statements:

Java

Ice.ObjectPrx p = comrunicator.stringToProxy("ident:tcp -p 5000");
p = p.ice_preferSecure(true);
p = p.ice_endpoint Sel ection(|ce. Endpoi nt Sel ecti onType. Or der ed) ;

The list of supported proxy properties includes the most commonly-used proxy settings. The communicator prints a warning by default if it does not
recognize a subordinate property. You can disable this warning using the property | ce. War n. UnknownPr operti es.

Note that proxy properties can themselves have proxy properties. For example, the following sets the Pr ef er Secur e property on the default
locator's router:

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Communicators
https://doc.zeroc.com/display/Ice35/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/Ice35/Communicators
https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/Ice+Proxy+Properties
https://doc.zeroc.com/display/Ice35/Ice+Warning+Properties#IceWarningProperties-Ice.Warn.UnknownProperties

Ice 3.5.1 Documentation

I ce. Def aul t. Locat or. Rout er. Pref er Secure=1

Obtaining a Proxy using Factory Methods

Proxy factory methods allow you to modify aspects of an existing proxy. Since proxies are immutable, factory methods always return a new proxy if
the desired modification differs from the proxy's current configuration. Consider the following C# example:

C#

Ice.wjectPrx p = comunicator.stringToProxy("...");
p = p.ice_oneway();

i ce_oneway is considered a factory method because it returns a proxy configured to use oneway invocations. If the original proxy uses a different
invocation mode, the return value of i ce_oneway is a new proxy object.

The checkedCast and uncheckedCast methods can also be considered factory methods because they return new proxies that are narrowed to a
particular Slice interface. A call to checkedCast or uncheckedCast typically follows the use of other factory methods, as shown below:

C#
Ice.ObjectPrx p = conmmunicator.stringToProxy("...");
Ice.LocatorPrx |l oc = Ice.LocatorPrxHel per.checkedCast (p.ice_secure(true));

Note however that, once a proxy has been narrowed to a Slice interface, it is not normally necessary to perform another down-cast after using a
factory method. For example, we can rewrite this example as follows:

Ct#
Ice. ObjectPrx p = communicator.stringToProxy("...");
Ice.LocatorPrx |l oc = Ice.LocatorPrxHel per.checkedCast (p);

loc = (lce.LocatorPrx)p.ice_secure(true);

A language-specific cast may be necessary, as shown here for C#, because the factory methods are declared to return the type Cbj ect Pr x, but the
proxy object itself retains its narrowed type. The only exceptions are the factory methods i ce_f acet andi ce_i denti ty. Calls to either of these
methods may produce a proxy for an object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an
appropriate type.

Obtaining a Proxy by Invoking Operations

An application can also obtain a proxy as the result of an Ice invocation. Consider the following Slice definitions:

Slice

interface Account { ... };
interface Bank {
Account* findAccount(string id);

}s

Invoking the f i ndAccount operation returns a proxy for an Account object. There is no need to use checkedCast or uncheckedCast on this
proxy because it has already been narrowed to the Account interface. The C++ code below demonstrates how to invoke f i ndAccount :

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Proxy+Methods

Ice 3.5.1 Documentation

C++

BankPrx bank = ...
Account Prx acct = bank->findAccount (id);

Of course, the application must have already obtained a proxy for the bank object using one of the techniques shown above.

See Also

Communicators

Proxy and Endpoint Syntax
Proxy Methods

Ice Proxy Properties

Ice Warning Properties

Copyright © 2017, ZeroC, Inc.


https://doc.zeroc.com/display/Ice35/Communicators
https://doc.zeroc.com/display/Ice35/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/Ice+Proxy+Properties
https://doc.zeroc.com/display/Ice35/Ice+Warning+Properties

	Obtaining Proxies

