
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

IceBox Administration
An IceBox server internally creates an object called the service manager that is responsible for loading and initializing the configured services. You
can optionally expose this object to remote clients, such as the IceBox and IceGrid administrative utilities, so that they can execute certain
administrative tasks.

On this page:

IceBox Administrative Slice Interfaces
The IceBox ServiceManager Interface
The IceBox ServiceObserver Interface

Enabling the Service Manager
IceBox Object Identities

IceBox.ServiceManager Object Adapter
Ice Administrative Facility

IceBox Administrative Client Configuration
Using the IceBox.ServiceManager Object Adapter
Using the Ice Administrative Facility

IceBox Administrative Utility

IceBox Administrative Slice Interfaces
The Slice definitions shown below comprise the IceBox administrative interface:

Slice

module IceBox {
exception AlreadyStartedException {};
exception AlreadyStoppedException {};
exception NoSuchServiceException {};

interface ServiceObserver {
 void servicesStarted(Ice::StringSeq services);
 void servicesStopped(Ice::StringSeq services);
};

interface ServiceManager {
 idempotent Ice::SliceChecksumDict getSliceChecksums();
 void startService(string service)
 throws AlreadyStartedException, NoSuchServiceException;
 void stopService(string service)
 throws AlreadyStoppedException, NoSuchServiceException;
 void addObserver(ServiceObserver* observer)
 void shutdown();
};
};

The IceBox InterfaceServiceManager

The interface provides access to the service manager object of an IceBox server. It defines the following operations:ServiceManager

getSliceChecksums
Returns a dictionary of that allows a client to verify that it is using the same Slice definitions as the server.checksums

startService
Starts a pre-configured service that is currently inactive. This operation cannot be used to add new services at run time, nor will it cause an
inactive service's implementation to be reloaded. If no matching service is found, the operation raises . If the NoSuchServiceException
service is already active, the operation raises .AlreadyStartedException

stopService
Stops an active service but does not unload its implementation. The operation raises if no matching service is NoSuchServiceException
found, and if the service is stopped at the time is invoked.AlreadyStoppedException stopService

https://doc.zeroc.com/display/Ice35/Slice+Checksums

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.

addObserver
Adds an observer that is called when IceBox services are started or stopped. The service manager ignores operations that supply a null
proxy, or a proxy that has already been registered.

shutdown
Terminates the services and shuts down the IceBox server.

The IceBox InterfaceServiceObserver

An administrative client that is interested in receiving callbacks when IceBox services are started or stopped must implement the ServiceObserver
interface and register the callback object's proxy with the service manager using its operation. The interface addObserver ServiceObserver
defines two operations:

servicesStarted
Invoked immediately upon registration to supply the current list of active services, and thereafter each time a service is started.

servicesStopped
Invoked whenever a service is stopped, and when the IceBox server is shutting down.

The IceBox server unregisters an observer if the invocation of either operation causes an exception.

Our discussion of includes an example that demonstrates how to register a callback with an IceBox server deployed with IceGrid ServiceObserver
IceGrid.

Enabling the Service Manager
IceBox's administrative functionality is disabled by default. You can enable it in two ways:

Define endpoints for the object adapter.IceBox.ServiceManager
Satisfy the prerequisites for enabling the Ice .administrative facility

For example, the following configuration property enables the object adapter:IceBox.ServiceManager

IceBox.ServiceManager.Endpoints=tcp -h 127.0.0.1 -p 10000

Similarly, the Ice administrative facility requires that endpoints be defined for the object adapter with the property Ice.Admin Ice.Admin.
. Note that the object adapter is enabled automatically in an IceBox server that is .Endpoints Ice.Admin deployed by IceGrid

Regardless of which object adapter(s) you choose to enable, exposing the service manager makes an IceBox server vulnerable to denial-of-service
attacks from malicious clients. Consequently, you should .choose the endpoints and transports carefully

IceBox Object Identities
Although an IceBox server has only one service manager object, the object is accessible via two different identities depending on how the
administrative functionality was enabled.

IceBox.ServiceManager Object Adapter

When this object adapter is enabled, the service manager object has the default identity . If an application requires the IceBox/ServiceManager
use of multiple IceBox servers, it is a good idea to assign unique identities to their service manager objects by configuring the servers with different
values for the property, as shown in the following example:IceBox.InstanceName

IceBox.InstanceName=IceBox1

This property changes the category of the object's identity, which becomes . A corresponding change must be made in IceBox1/ServiceManager
the configuration of administrative clients.

Ice Administrative Facility

https://doc.zeroc.com/display/Ice35/IceGrid+and+the+Administrative+Facility#IceGridandtheAdministrativeFacility-routing
https://doc.zeroc.com/display/Ice35/Administrative+Facility
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.Endpoints
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.Endpoints
https://doc.zeroc.com/display/Ice35/IceGrid+and+the+Administrative+Facility
https://doc.zeroc.com/display/Ice35/Security+Considerations+for+Administrative+Facets
https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.InstanceName

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

When this facility is enabled, the service manager is added as a facet of the server's object. As a result, the identity of the service manager is admin
the same as that of the object, and the name of its facet is . The identity of the object uses either a UUID admin IceBox.ServiceManager admin
or a statically-configured value for its category, and the value for its name. For example, consider the following property definitions:admin

Ice.Admin.Endpoints=tcp -h 127.0.0.1 -p 10001
Ice.Admin.InstanceName=IceBox

In this case, the identity of the object is .admin IceBox/admin

IceBox also registers a facet for each of its services so that the configuration properties of a service can be inspected remotely. The Properties
facet name is constructed as follows:

IceBox.Service.name.Properties

The value represents the service name.name

IceBox Administrative Client Configuration
A client requiring administrative access to the service manager can create a proxy using the endpoints configured for the .service manager

Using the Object AdapterIceBox.ServiceManager

To access the service manager via the object adapter, the proxy should use the default identity IceBox.ServiceManager IceBox
 unless the server has using the property./ServiceManager changed the category IceBox.InstanceName

Using the Ice Administrative Facility

To access the service manager via the administrative facility, the client must first obtain (or be able to construct) a proxy for the object. The admin
default identity of the object uses a UUID for its category, which means the client cannot predict the identity and therefore will be unable to admin
construct the proxy itself. If the IceBox server is deployed with IceGrid, the client can use the technique described in our discussion of to IceGrid
access its object.admin

In the absence of IceGrid, the IceBox server should set the property if remote administration is required. In so doing, Ice.Admin.InstanceName
the identity of the object becomes well-known, and a client can construct the proxy on its own. For example, let us assume that the IceBox admin
server defines the following property:

Ice.Admin.InstanceName=IceBox

A client can define the proxy for the object in a configuration property as follows:admin

ServiceManager.Proxy=IceBox/admin -f IceBox.ServiceManager -h 127.0.0.1 -p 10001

The specifies the name of the service manager's administrative facet.proxy option -f IceBox.ServiceManager

IceBox Administrative Utility
IceBox includes C++ and Java implementations of an administrative utility. The utilities have the same usage:

https://doc.zeroc.com/display/Ice35/The+admin+Object
https://doc.zeroc.com/display/Ice35/The+Properties+Facet
https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.InstanceName
https://doc.zeroc.com/display/Ice35/The+admin+Object
https://doc.zeroc.com/display/Ice35/IceGrid+and+the+Administrative+Facility#IceGridandtheAdministrativeFacility-routing
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.InstanceName
https://doc.zeroc.com/display/Ice35/Proxy+and+Endpoint+Syntax

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Usage: iceboxadmin [options] [command...]
Options:
-h, --help Show this message.
-v, --version Display the Ice version.

Commands:
start SERVICE Start a service.
stop SERVICE Stop a service.
shutdown Shutdown the server.

The C++ utility is named , while the Java utility is represented by the class .iceboxadmin IceBox.Admin

The command is equivalent to invoking on the service manager interface. Its purpose is to start a pre-configured service; it start startService
cannot be used to add new services at run time. Note that this command does not cause the service's implementation to be reloaded.

Similarly, the command stops the requested service but does not cause the IceBox server to unload the service's implementation.stop

The command stops all active services and shuts down the IceBox server.shutdown

The C++ and Java utilities obtain the service manager's proxy from the property , therefore this proxy IceBoxAdmin.ServiceManager.Proxy
must be defined in the program's configuration file or on the command line, and the proxy's contents of depend on the server's configuration. If the
IceBox server is deployed with IceGrid, we recommend using the IceGrid instead, which provide equivalent commands for administrative utilities
administering an IceBox server. Otherwise, the proxy should have the and configured for the server.endpoints identity

See Also

Slice Checksums
Administrative Facility
The admin Object
The Properties Facet
icegridadmin Command Line Tool
IceGrid and the Administrative Facility
IceBox Properties
IceBoxAdmin Properties
Ice Administrative Properties

https://doc.zeroc.com/display/Ice35/IceBoxAdmin+Properties#IceBoxAdminProperties-IceBoxAdmin.ServiceManager.Proxy
https://doc.zeroc.com/display/Ice35/icegridadmin+Command+Line+Tool
https://doc.zeroc.com/display/Ice35/Slice+Checksums
https://doc.zeroc.com/display/Ice35/Administrative+Facility
https://doc.zeroc.com/display/Ice35/The+admin+Object
https://doc.zeroc.com/display/Ice35/The+Properties+Facet
https://doc.zeroc.com/display/Ice35/icegridadmin+Command+Line+Tool
https://doc.zeroc.com/display/Ice35/IceGrid+and+the+Administrative+Facility
https://doc.zeroc.com/display/Ice35/IceBox+Properties
https://doc.zeroc.com/display/Ice35/IceBoxAdmin+Properties
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties

	IceBox Administration

