
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Application Distribution
On this page:

Using IcePatch2 to Distribute Applications
Deploying an IcePatch2 Server

Patching Considerations
IcePatch2 Server Template

Adding Distribution to a Deployment
Distributing Applications and Servers
Server Integrity during Distribution
Distribution Descriptor Variables
Using Distribution in the Ripper Application

Using IcePatch2 to Distribute Applications
In the section so far, "deployment" has meant the creation of descriptors in the registry. A broader definition involves a number of other tasks:

Writing IceGrid configuration files and preparing data directories on each computer
Installing the IceGrid binaries and dependent libraries on each computer
Starting the registry and/or node on each computer, and possibly configuring the systems to launch them automatically
Distributing your server executables, dependent libraries and supporting files to the appropriate nodes.

The first three tasks are the responsibility of the system administrator, but IceGrid can help with the fourth. Using an  server, you can IcePatch2
configure the nodes to download servers automatically and patch them at any time. The illustration below shows the interactions of the components:

Overview of application distribution.

As you can see, deploying an IceGrid application has greater significance when IcePatch2 is also involved. After deployment, the  inadministrative tool
itiates a patch, causing the registry to notify all active nodes that are configured for application distribution to begin the patching process. Since each 
IceGrid node is an IcePatch2 client, the node performs the patch just like any IcePatch2 client: it downloads everything if no local copy of the 
distribution exists, otherwise it does an incremental patch in which it downloads only new files and those whose signatures have changed.

The benefits of this feature are clear:

The distribution files are maintained in a central location
Updating a distribution on all of the nodes is a simple matter of preparing the master distribution and letting IceGrid do the rest
Manually transferring executables and supporting files to each computer is avoided, along with the mistakes that manual intervention 
sometimes introduces.

Deploying an IcePatch2 Server
If you plan to use IceGrid's distribution capabilities, we generally recommend deploying an IcePatch2 server along with your application. Doing so 
gives you the same benefits as any other IceGrid server, including on-demand activation and remote administration. We will only use one server in 
our sample application, but you might consider replicating a number of IcePatch2 servers in order to balance the patching load for large distributions.

Patching Considerations

Deploying an IcePatch2 server with your application presents a chicken-and-egg dilemma: how do the nodes download their distributions if the 
IcePatch2 server is included in the deployment? To answer this question, we need to learn more about IceGrid's behavior.

Deploying and patching are treated as two separate steps: first you deploy the application, then you initiate the patching process. The icegridadmin
utility combines these steps into one command ( ), but also provides an option to disable the patching step if so desired.application add

https://doc.zeroc.com/display/Ice35/IcePatch2
https://doc.zeroc.com/display/Ice35/icegridadmin+Command+Line+Tool


Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Let's consider the state of the application after deployment but before patching: we have described the servers that run on each node, including file 
system-dependent attributes such as the pathnames of their executables and default working directories. If these pathnames refer to directories in 
the distribution, and the distribution has not yet been downloaded to that node, then clearly we cannot attempt to use those servers until patching has 
completed. Similarly, we cannot deploy an IcePatch2 server whose executable resides in the distribution to be downloaded.

For these reasons, we assume that the IcePatch2 server and supporting libraries are distributed by the system administrator along with the IceGrid 
registry and nodes to the appropriate computers. The server should be configured for on-demand activation so that its node starts it automatically 
when patching begins. If the server is configured for manual activation, you must start it prior to patching.

IcePatch2 Server Template

The Ice distribution includes an IcePatch2  that simplifies the inclusion of IcePatch2 in your application. The relevant portion from the server template
file  is shown below:config/templates.xml

XML

<server-template id="IcePatch2">
    <parameter name="instance-name" default="${application}.IcePatch2"/>
    <parameter name="endpoints" default="default"/>
    <parameter name="directory"/>

    <server id="${instance-name}" exe="icepatch2server"
        application-distrib="false" activation="on-demand">
        <adapter name="IcePatch2" endpoints="${endpoints}">
            <object identity="${instance-name}/server" type="::IcePatch2::FileServer"/>
        </adapter>
        <adapter name="IcePatch2.Admin" id="" endpoints="tcp -h 127.0.0.1"/>
        <property name="IcePatch2.InstanceName" value="${instance-name}"/>
        <property name="IcePatch2.Directory" value="${directory}"/>
    </server>
</server-template>

Notice that the server's pathname is , meaning the program must be present in the node's executable search path. The only icepatch2server
mandatory parameter is , which specifies the server's data directory and becomes the value of the  property. directory IcePatch2.Directory
The value of the  parameter is used as the server's identifier when the template is instantiated; its default value includes the name instance-name
of the application in which the template is used. This identifier also affects the identities of the two  declared by the server.well-known objects

Consider the following sample application:

XML

<icegrid>
    <application name="PatchDemo">
        <node name="Node">
            <server-instance template="IcePatch2" directory="/opt/icepatch2/data"/>
            ...
        </node>
    </application>
</icegrid>

Instantiating the  template creates a server identified as  (as determined by the default value for the IcePatch2 PatchDemo.IcePatch2 instance-
 parameter). The well-known objects use this value as the category in their identities, such as .name PatchDemo.IcePatch2/server

In order to refer to the  template in your application, you must have already configured the registry to use the  IcePatch2 config/templates.xml
file as your , or copied the template into the XML file describing your application.default templates

Adding Distribution to a Deployment

We are ignoring the case where a temporary IcePatch2 server is used to bootstrap other IcePatch2 servers.

https://doc.zeroc.com/display/Ice35/IceGrid+Templates
https://doc.zeroc.com/display/Ice35/IcePatch2+Properties#IcePatch2Properties-IcePatch2.Directory
https://doc.zeroc.com/display/Ice35/IcePatch2+Object+Identities
https://doc.zeroc.com/display/Ice35/IceGrid+Templates#IceGridTemplates-default


Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

A  provides the details that a node requires in order to download the necessary files. Specifically, the descriptor supplies the distribution descriptor
proxy of the IcePatch2 server and the names of the subdirectories comprising the distribution, all of which are optional. If the descriptor does not 
define the proxy, the following default value is used instead:

${application}.IcePatch2/server

You may recall that this value matches the default identity configured by the IcePatch2 server template described . Also notice that this is an above
indirect proxy, implying that the IcePatch2 server was deployed with the application and can be started on-demand if necessary.

If the descriptor does not select any subdirectories, the node downloads the entire contents of the IcePatch2 data directory.

In XML, a descriptor having the default behavior as described above can be written as shown below:

XML

<distrib/>

To specify a proxy, use the  attribute:icepatch

XML

<distrib icepatch="PatchDemo.IcePatch2/server"/>

Finally, select subdirectories using a nested element:

XML

<distrib>
    <directory>dir1</directory>
    <directory>dir2/subdir</directory>
</distrib>

By including only certain subdirectories in a distribution, you are minimizing the time and effort required to download and patch each node. For 
example, each node in a heterogeneous network might download a platform-specific subdirectory and another subdirectory containing files common 
to all platforms.

Distributing Applications and Servers
A  can be used in two contexts: within an application, and within a server. When the descriptor appears at the application level, distribution descriptor
it means every node in the application downloads that distribution. This is useful for distributing files required by all of the nodes on which servers are 
deployed, especially in a grid of homogeneous computers where it would be tedious to repeat the same distribution information in each server 
descriptor. Here is a simple XML example:

XML

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        ...
    </application>
</icegrid>

At the server level, a distribution descriptor downloads the specified directories for the private use of the server:

https://doc.zeroc.com/display/Ice35/Distrib+Descriptor+Element
https://doc.zeroc.com/display/Ice35/Distrib+Descriptor+Element


Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

XML

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="SimpleServer" ...>
                <distrib>
                    <directory>ServerFiles</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

When a distribution descriptor is defined at both the application and server levels, as shown in the previous example, IceGrid assumes that a 
dependency relationship exists between the two unless the server is configured otherwise. IceGrid checks this dependency before patching a server; 
if the server is dependent on the application's distribution, IceGrid patches the application's distribution first, and then proceeds to patch the server's. 
You can disable this dependency by modifying the server's descriptor:

XML

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="SimpleServer" application-distrib="false" ...>
                <distrib>
                    <directory>ServerFiles</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

Setting the  attribute to  informs IceGrid to consider the two distributions independent of one another.application-distrib false

Server Integrity during Distribution
Before an IceGrid node begins patching a distribution, it ensures that all relevant servers are shut down and prevents them from reactivating until 
patching completes. For example, the node disables all of the servers whose descriptors declare a dependency on the .application distribution

Distribution Descriptor Variables
The node stores application and server distributions in its data directory. The path names of the distributions are represented by  threserved variables
at you can use in your descriptors:

application.distrib
This variable can be used within server descriptors to refer to the top-level directory of the application distribution.

server.distrib
The value of this variable is the top-level directory of a server distribution. It can be used only within a server descriptor that has a 
distribution.

The XML example shown below illustrates the use of these variables:

https://doc.zeroc.com/display/Ice35/Using+Descriptor+Variables+and+Parameters


Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

XML

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="Server1" exe="${application.distrib}/Common/Bin/Server1" ...>
            </server>
            <server id="Server2" exe="${server.distrib}/Server2Files/Bin/Server2" ...>
                <option>-d</option>
                <option>${server.distrib}/Server2Files</option>
                <distrib>
                    <directory>Server2Files</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

Notice that the descriptor for  supplies the server's distribution directory as command-line options.Server2

Using Distribution in the Ripper Application
Adding an application distribution to our  requires two minor changes to our descriptors:ripper example

XML

<icegrid>
    <application name="Ripper">
        <replica-group id="EncoderAdapters">
            <load-balancing type="adaptive"/>
            <object identity="EncoderFactory" type="::Ripper::MP3EncoderFactory"/>
        </replica-group>
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath" default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}" exe="${exepath}" activation="on-demand">
                <adapter name="EncoderAdapter" replica-group="EncoderAdapters"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <distrib/>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate" index="1"/>
            <server-instance template="IcePatch2" directory="/opt/ripper/icepatch"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate" index="2"/>
        </node>
    </application>
</icegrid>

An application distribution is sufficient for this example because we are deploying the same server on each node. We have also deployed an 
 on  using the template.IcePatch2 server Node1

See Also

IcePatch2
icegridadmin Command Line Tool

https://doc.zeroc.com/display/Ice35/Object+Adapter+Replication#ObjectAdapterReplication-ripper
https://doc.zeroc.com/display/Ice35/IcePatch2
https://doc.zeroc.com/display/Ice35/icegridadmin+Command+Line+Tool


Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

IceGrid Templates
Distrib Descriptor Element
Using Descriptor Variables and Parameters
Object Adapter Replication
IcePatch2 Object Identities

https://doc.zeroc.com/display/Ice35/IceGrid+Templates
https://doc.zeroc.com/display/Ice35/Distrib+Descriptor+Element
https://doc.zeroc.com/display/Ice35/Using+Descriptor+Variables+and+Parameters
https://doc.zeroc.com/display/Ice35/Object+Adapter+Replication
https://doc.zeroc.com/display/Ice35/IcePatch2+Object+Identities

	Application Distribution

