
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Interface Inheritance
On this page:

Interface Inheritance
Interface Inheritance Limitations
Implicit Inheritance from Object
Null Proxies
Self-Referential Interfaces
Empty Interfaces
Interface Versus Implementation Inheritance

Interface Inheritance
Interfaces support inheritance. For example, we could extend our to support the concept of an alarm clock:world-time server

Slice

interface AlarmClock extends Clock {
 idempotent TimeOfDay getAlarmTime();
 idempotent void setAlarmTime(TimeOfDay alarmTime)
 throws BadTimeVal;
};

The semantics of this are the same as for C++ or Java: is a subtype of and an proxy can be substituted wherever AlarmClock Clock AlarmClock
a proxy is expected. Obviously, an supports the same and operations as a but also supports the Clock AlarmClock getTime setTime Clock get

 and operations.AlarmTime setAlarmTime

Multiple interface inheritance is also possible. For example, we can construct a radio alarm clock as follows:

Slice

interface Radio {
 void setFrequency(long hertz) throws GenericError;
 void setVolume(long dB) throws GenericError;
};

enum AlarmMode { RadioAlarm, BeepAlarm };

interface RadioClock extends Radio, AlarmClock {
 void setMode(AlarmMode mode);
 AlarmMode getMode();
};

RadioClock extends both and and can therefore be passed where a , an , or a is expected. The Radio AlarmClock Radio AlarmClock Clock
inheritance diagram for this definition looks as follows:

https://doc.zeroc.com/display/Ice35/Proxies

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Inheritance diagram for .RadioClock

Interfaces that inherit from more than one base interface may share a common base interface. For example, the following definition is legal:

Slice

interface B { /* ... */ };
interface I1 extends B { /* ... */ };
interface I2 extends B { /* ... */ };
interface D extends I1, I2 { /* ... */ };

This definition results in the familiar diamond shape:

Diamond-shaped inheritance.

Interface Inheritance Limitations
If an interface uses multiple inheritance, it must not inherit the same operation name from more than one base interface. For example, the following
definition is illegal:

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Slice

interface Clock {
 void set(TimeOfDay time); // set time
};

interface Radio {
 void set(long hertz); // set frequency
};

interface RadioClock extends Radio, Clock { // Illegal!
 // ...
};

This definition is illegal because inherits two operations, and . The Slice compiler makes this illegal RadioClock set Radio::set Clock::set
because (unlike C++) many programming languages do not have a built-in facility for disambiguating the different operations. In Slice, the simple rule
is that all inherited operations must have unique names. (In practice, this is rarely a problem because inheritance is rarely added to an interface
hierarchy "after the fact". To avoid accidental clashes, we suggest that you use descriptive operation names, such as and . setTime setFrequency
This makes accidental name clashes less likely.)

Implicit Inheritance from Object
All Slice interfaces are ultimately derived from . For example, the would be shown more correctly as:Object inheritance hierarchy

Implicit inheritance from .Object

Because all interfaces have a common base interface, we can pass any type of interface as that type. For example:

Slice

interface ProxyStore {
 idempotent void putProxy(string name, Object* o);
 idempotent Object* getProxy(string name);
};

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Object is a Slice keyword (note the capitalization) that denotes the root type of the inheritance hierarchy. The interface is a generic ProxyStore
proxy storage facility: the client can call to add a proxy of any type under a given name and later retrieve that proxy again by calling putProxy getPr

 and supplying that name. The ability to generically store proxies in this fashion allows us to build general-purpose facilities, such as a oxy naming
 that can store proxies and deliver them to clients. Such a service, in turn, allows us to avoid hard-coding proxy details into clients and servers.service

Inheritance from type is always implicit. For example, the following Slice definition is illegal:Object

Slice

interface MyInterface extends Object { /* ... */ }; // Error!

It is understood that all interfaces inherit from type ; you are not allowed to restate that.Object

Type is mapped to an abstract type by the various language mappings, so you cannot instantiate an Ice object of that type.Object

Null Proxies
Looking at the interface once more, we notice that does not have an exception specification. The question then is what ProxyStore getProxy
should happen if a client calls with a name under which no proxy is stored? Obviously, we could add an exception to indicate this getProxy
condition to . However, another option is to return a . Ice has the built-in notion of a null proxy, which is a proxy that "points getProxy null proxy
nowhere". When such a proxy is returned to the client, the client can test the value of the returned proxy to check whether it is null or denotes a valid
object.

A more interesting question is: "which approach is more appropriate, throwing an exception or returning a null proxy?" The answer depends on the
expected usage pattern of an interface. For example, if, in normal operation, you do not expect clients to call with a non-existent name, it getProxy
is better to throw an exception. (This is probably the case for our interface: the fact that there is no operation makes it clear that ProxyStore list
clients are expected to know which names are in use.)

On the other hand, if you expect that clients will occasionally try to look up something that is not there, it is better to return a null proxy. The reason is
that throwing an exception breaks the normal flow of control in the client and requires special handling code. This means that you should throw
exceptions only in exceptional circumstances. For example, throwing an exception if a database lookup returns an empty result set is wrong; it is
expected and normal that a result set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that get these details right are easier to use and easier to understand. Not
only do such interfaces make life easier for client developers, they also make it less likely that latent bugs cause problems later.

Self-Referential Interfaces
Proxies have pointer semantics, so we can define self-referential interfaces. For example:

Slice

interface Link {
 idempotent SomeType getValue();
 idempotent Link* next();
};

The interface contains a operation that returns a proxy to a interface. Obviously, this can be used to create a chain of interfaces; Link next Link
the final link in the chain returns a null proxy from its operation.next

Empty Interfaces
The following Slice definition is legal:

Slice

interface Empty {};

https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/display/Ice35/IceGrid

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

1.
2.

The Slice compiler will compile this definition without complaint. An interesting question is: "why would I need an empty interface?" In most cases,
empty interfaces are an indication of design errors. Here is one example:

Slice

interface ThingBase {};

interface Thing1 extends ThingBase {
 // Operations here...
};

interface Thing2 extends ThingBase {
 // Operations here...
};

Looking at this definition, we can make two observations:

Thing1 and have a common base and are therefore related.Thing2
Whatever is common to and can be found in interface .Thing1 Thing2 ThingBase

Of course, looking at , we find that and do not share any operations at all because is empty. Given that we ThingBase Thing1 Thing2 ThingBase
are using an object-oriented paradigm, this is definitely strange: in the object-oriented model, the way to communicate with an object is to send a only
message to the object. But, to send a message, we need an operation. Given that has no operations, we cannot send a message to it, ThingBase
and it follows that and are related because they have no common operations. But of course, seeing that and Thing1 Thing2 not Thing1 Thing2
have a common base, we conclude that they related, otherwise the common base would not exist. At this point, most programmers begin to are
scratch their head and wonder what is going on here.

One common use of the above design is a desire to treat and polymorphically. For example, we might continue the previous Thing1 Thing2
definition as follows:

Slice

interface ThingUser {
 void putThing(ThingBase* thing);
};

Now the purpose of having the common base becomes clear: we want to be able to pass both and proxies to . Does this Thing1 Thing2 putThing
justify the empty base interface? To answer this question, we need to think about what happens in the implementation of . Obviously, putThing putT

 cannot possibly invoke an operation on a because there are no operations. This means that can do one of two things:hing ThingBase putThing

putThing can simply remember the value of .thing
putThing can try to down-cast to either or and then invoke an operation. The pseudo-code for the implementation of Thing1 Thing2 putTh

 would look something like this:ing

void putThing(ThingBase thing)
{
 if (is_a(Thing1, thing)) {
 // Do something with Thing1...
 } else if (is_a(Thing2, thing)) {
 // Do something with Thing2...
 } else {
 // Might be a ThingBase?
 // ...
 }
}

The implementation tries to down-cast its argument to each possible type in turn until it has found the actual run-time type of the argument.
Of course, any object-oriented text book worth its price will tell you that this is an abuse of inheritance and leads to maintenance problems.

If you find yourself writing operations such as that rely on artificial base interfaces, ask yourself whether you really need to do things this putThing
way. For example, a more appropriate design might be:

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Slice

interface Thing1 {
 // Operations here...
};

interface Thing2 {
 // Operations here...
};

interface ThingUser {
 void putThing1(Thing1* thing);
 void putThing2(Thing2* thing);
};

With this design, and are not related, and offers a separate operation for each type of proxy. The implementation of Thing1 Thing2 ThingUser
these operations does not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:

Slice

interface PersistentObject {};

interface Thing1 extends PersistentObject {
 // Operations here...
};

interface Thing2 extends PersistentObject {
 // Operations here...
};

Clearly, the intent of this design is to place persistence functionality into the base and require objects that want PersistentObject implementation
to have persistent state to inherit from . On the face of things, this is reasonable: after all, using inheritance in this way is a well-PersistentObject
established design pattern, so what can possibly be wrong with it? As it turns out, there are a number of things that are wrong with this design:

The above inheritance hierarchy is used to add to and . However, in a strict OO model, behavior can be invoked behavior Thing1 Thing2
only by sending messages. But, because has no operations, no messages can be sent.PersistentObject
This raises the question of how the implementation of actually goes about doing its job; presumably, it knows PersistentObject
something about the implementation (that is, the internal state) of and , so it can write that state into a database. But, if so, Thing1 Thing2 P

, , and can no longer be implemented in different address spaces because, in that case, ersistentObject Thing1 Thing2 PersistentO
 can no longer get at the state of and .bject Thing1 Thing2

Alternatively, and use some functionality provided by in order to make their internal state persistent. Thing1 Thing2 PersistentObject
But does not have any operations, so how would and actually go about achieving this? Again, the PersistentObject Thing1 Thing2
only way that can work is if , , and are implemented in a single address space and share PersistentObject Thing1 Thing2
implementation state behind the scenes, meaning that they cannot be implemented in different address spaces.

The above inheritance hierarchy splits the world into two halves, one containing persistent objects and one containing non-persistent ones.
This has far-reaching ramifications:

Suppose you have an existing application with already implemented, non-persistent objects. Requirements change over time and
you find that you now would like to make some of your objects persistent. With the above design, you cannot do this unless you
change the type of your objects because they now must inherit from . Of course, this is extremely bad news: PersistentObject
not only do you have to change the implementation of your objects in the server, you also need to locate and update all the clients
that are currently using your objects because they suddenly have a completely new type. What is worse, there is no way to keep
things backward compatible: either all clients change with the server, or none of them do. It is impossible for some clients to remain
"unupgraded".
The design does not scale to multiple features. Imagine that we have a number of additional behaviors that objects can inherit,
such as serialization, fault-tolerance, persistence, and the ability to be searched by a search engine. We quickly end up in a mess
of multiple inheritance. What is worse, each possible combination of features creates a completely separate type hierarchy. This
means that you can no longer write operations that generically operate on a number of object types. For example, you cannot pass
a persistent object to something that expects a non-persistent object, even if the receiver of the object does not care about the

. This quickly leads to fragmented and hard-to-maintain type systems. Before long, you will either persistence aspects of the object
find yourself rewriting your application or end up with something that is both difficult to use and difficult to maintain.

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

The foregoing discussion will hopefully serve as a warning: Slice is an definition language that has nothing to do with (but interface implementation
empty interfaces almost always indicate that implementation state is shared via mechanisms other than defined interfaces). If you find yourself writing
an empty interface definition, at least step back and think about the problem at hand; there may be a more appropriate design that expresses your
intent more cleanly. If you do decide to go ahead with an empty interface regardless, be aware that, almost certainly, you will lose the ability to later
change the distribution of the object model over physical server processes because you cannot place an address space boundary between interfaces
that share hidden state.

Interface Versus Implementation Inheritance
Keep in mind that Slice interface inheritance applies only to . In particular, if two interfaces are in an inheritance relationship, this in no way interfaces
implies that the implementations of those interfaces must also inherit from each other. You can choose to use implementation inheritance when you
implement your interfaces, but you can also make the implementations independent of each other. (To C++ programmers, this often comes as a
surprise because C++ uses implementation inheritance by default, and interface inheritance requires extra effort to implement.)

In summary, Slice inheritance simply establishes type compatibility. It says nothing about how interfaces are implemented and, therefore, keeps
implementation choices open to whatever is most appropriate for your application.

See Also

Interfaces, Operations, and Exceptions
Operations
User Exceptions
Run-Time Exceptions
Proxies
IceGrid

https://doc.zeroc.com/display/Ice35/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/Ice35/Operations
https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/Proxies
https://doc.zeroc.com/display/Ice35/IceGrid

	Interface Inheritance

