
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Asynchronous Method Invocation (AMI) in Java
Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI supports 
both oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a client issues an 
AMI request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the request for later delivery. 
The application can then continue its activities and poll or wait for completion of the invocation, or receive a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

On this page:

Basic Asynchronous API in Java
Asynchronous Proxy Methods in Java
Asynchronous Exception Semantics in Java

AsyncResult Class in Java
Polling for Completion in Java
Generic Completion Callbacks in Java
Sharing State Between begin_ and end_ Methods in Java
Type-Safe Completion Callbacks in Java
Asynchronous Oneway Invocations in Java
Flow Control in Java
Asynchronous Batch Requests in Java
Concurrency Semantics for AMI in Java
AMI Limitations in Java

Basic Asynchronous API in Java
Consider the following simple Slice definition:

Slice

module Demo { 
    interface Employees {
        string getName(int number);
    };
};

Asynchronous Proxy Methods in Java

Besides the synchronous proxy methods,  generates the following asynchronous proxy methods:slice2java

Java

public interface EmployeesPrx extends Ice.ObjectPrx
{
    // ...

    public Ice.AsyncResult begin_getName(int number);
    public Ice.AsyncResult begin_getName(int number, java.util.Map<String, String> __ctx);

    public String end_getName(Ice.AsyncResult __result);
}

As of version 3.4, Ice provides a new API for asynchronous method invocation. This page describes the new API. Note that the  is old API
deprecated and will be removed in a future release.

Four additional overloads of  are generated for use with  and .begin_getName generic completion callbacks type-safe completion callbacks

https://doc.zeroc.com/display/Ice34/Deprecated+AMI+Mapping


Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

As you can see, the single  operation results in  and  methods. (The  method is overloaded so you getName begin_getName end_getName begin_
can pass a .)per-invocation context

The  method sends (or queues) an invocation of . This method does not block the calling thread.begin_getName getName
The  method collects the result of the asynchronous invocation. If, at the time the calling thread calls , the end_getName end_getName
result is not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some time before 
the call to , the method returns immediately with the result.end_getName

A client could call these methods as follows:

Java

EmployeesPrx e = ...;
Ice.AsyncResult r = e.begin_getName(99);

// Continue to do other things here...

String name = e.end_getName(r);

Because  does not block, the calling thread can do other things while the operation is in progress.begin_getName

Note that  returns a value of type . This value contains the state that the Ice run time requires to keep track of the begin_getName AsyncResult
asynchronous invocation. You must pass the  that is returned by the  method to the corresponding  method.AsyncResult begin_ end_

The  method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the  method has one out-begin_ end_
parameter for each out-parameter of the corresponding Slice operation (plus the  parameter). For example, consider the following AsyncResult
operation:

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The  and  methods have the following signature:begin_op end_op

Java

Ice.AsyncResult begin_op(int inp1, String inp2);
Ice.AsyncResult begin_op(int inp1, String inp2, java.util.Map<String, String> __ctx);
double end_op(Ice.BooleanHolder outp1, Ice.LongHolder outp2, Ice.AsyncResult r);

Asynchronous Exception Semantics in Java

If an invocation raises an exception, the exception is thrown by the  method, even if the actual error condition for the exception was encountered end_
during the  method ("on the way out"). The advantage of this behavior is that all exception handling is located with the code that calls the begin_ end_
method (instead of being present twice, once where the  method is called, and again where the  method is called).begin_ end_

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the  method throws begin_ Co
. This is necessary because, once the run time is finalized, it can no longer throw an exception from the  mmunicatorDestroyedException end_

method.

The only other exception that is thrown by the  and  methods is . This exception indicates begin_ end_ java.lang.IllegalArgumentException
that you have used the API incorrectly. For example, the  method throws this exception if you call an operation that has a return value or out-begin_
parameters on a oneway proxy. Similarly, the  method throws this exception if you use a different proxy to call the  method than the proxy end_ end_
you used to call the  method, or if the  you pass to the  method was obtained by calling the  method for a begin_ AsyncResult end_ begin_
different operation.

AsyncResult Class in Java
The  that is returned by the  method encapsulates the state of the asynchronous invocation:AsyncResult begin_

https://doc.zeroc.com/display/Ice34/Request+Contexts


Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

Java

public class AsyncResult {
    public Communicator getCommunicator();
    public Connection getConnection();
    public ObjectPrx getProxy();
    public String getOperation();

    public boolean isCompleted();
    public void waitForCompleted();

    public boolean isSent();
    public void waitForSent();

    public void throwLocalException();

    public boolean sentSynchronously();
}

The methods have the following semantics:

Communicator getCommunicator()
This method returns the communicator that sent the invocation.

Connection getConnection()
This method returns the connection that was used for the invocation. Note that, for typical asynchronous proxy invocations, this method 
returns a nil value because the possibility of automatic retries means the connection that is currently in use could change unexpectedly. The 

 method only returns a non-nil value when the   object is obtained by calling   getConnection AsyncResult begin_flushBatchRequests
on a   object.Connection

ObjectPrx getProxy()
This method returns the proxy that was used to call the   method, or nil if the   object was not obtained via an begin_ AsyncResult
asynchronous proxy invocation.

String getOperation()
This method returns the name of the operation.

boolean isCompleted()
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the  method will not end_
block the caller. Otherwise, if the result is not yet available, the method returns false.

void waitForCompleted()
This method blocks the caller until the result of an invocation becomes available.

boolean isSent()
When you call the  method, the Ice run time attempts to write the corresponding request to the client-side transport. If the transport begin_
cannot accept the request, the Ice run time queues the request for later transmission.  returns true if, at the time it is called, the isSent
request has been written to the local transport (whether it was initially queued or not). Otherwise, if the request is still queued or an 
exception occurred before the request could be sent,  returns false.isSent

void waitForSent()
This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After waitForSent
returns,  returns true if the request was successfully written to the client-side transport, or false if an exception occurred. In the case isSent
of a failure, you can call the corresponding  method or  to obtain the exception.end_ throwLocalException

void throwLocalException()
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet,  does throwLocalException
nothing.

boolean sentSynchronously()
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially queued, se

 returns false (independent of whether the request is still in the queue or has since been written to the client-side ntSynchronously
transport).

Polling for Completion in Java



Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

The  methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the following simple AsyncResult
interface to transfer files from client to server:

Slice

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls  to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit a file send
would be along the following lines:

Java

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;
while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize); // Read a chunk
    ft.send(offset, bs);       // Send the chunk
    offset += bs.length;
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive 
the data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing 
— the client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:



Ice 3.4.2 Documentation

5 Copyright © 2017, ZeroC, Inc.

Java

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;

LinkedList<Ice.AsyncResult> results = new LinkedList<Ice.AsyncResult>();
int numRequests = 5;

while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize);

    // Send up to numRequests + 1 chunks asynchronously.
    Ice.AsyncResult r = ft.begin_send(offset, bs);
    offset += bs.length;

    // Wait until this request has been passed to the transport.
    r.waitForSent();
    results.add(r);

    // Once there are more than numRequests, wait for the least
    // recent one to complete.
    while (results.size() > numRequests) {
        Ice.AsyncResult r = results.getFirst();
        results.removeFirst();
        r.waitForCompleted();
    }
}

// Wait for any remaining requests to complete.
while (results.size() > 0) {
    Ice.AsyncResult r = results.getFirst();
    results.removeFirst();
    r.waitForCompleted();
}

With this code, the client sends up to  chunks before it waits for the least recent one of these requests to complete. In other numRequests + 1
words, the client sends the next request without waiting for the preceding request to complete, up to the limit set by . In effect, this numRequests
allows the client to "keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of  depend on the bandwidth of the network as well as the amount of time taken by the numRequests
server to process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more 
requests no longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the 
theoretical bandwidth limit of a native socket connection.

Generic Completion Callbacks in Java
The  method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the  operation:begin_ getName

Java

Ice.AsyncResult begin_getName(int number, Ice.Callback __cb);

Ice.AsyncResult begin_getName(int number,
                              java.util.Map<String, String> __ctx,
                              Ice.Callback __cb);



Ice 3.4.2 Documentation

6 Copyright © 2017, ZeroC, Inc.

The second version of  lets you override the default context. Following the in-parameters, the  method accepts a parameter begin_getName begin_
of type , which is a callback class with a  method that you must provide. The Ice run time invokes the  Ice.Callback completed completed
method when an asynchronous operation completes. For example:

Java

public class MyCallback extends Ice.Callback
{
    public void completed(Ice.AsyncResult r)
    {
        EmployeesPrx e = (EmployeesPrx)r.getProxy();
        try {
            String name = e.end_getName(r);
            System.out.println("Name is: " + name);
        } catch (Ice.LocalException ex) {
            System.err.println("Exception is: " + ex);
        }
    }
}

Note that your callback class must derive from . The implementation of your callback method must call the  method. The proxy Ice.Callback end_
for the call is available via the  method on the  that is passed by the Ice run time. The return type of  is getProxy AsyncResult getProxy Ice.

, so you must down-cast the proxy to its correct type.ObjectPrx

Your callback method should catch and handle any exceptions that may be thrown by the  method. If an operation can throw user exceptions, end_
this means that you need an additional catch handler for  (or catch all possible user exceptions explicitly). If you allow an Ice.UserException
exception to escape from the callback method, the Ice run time produces a log entry by default and ignores the exception. (You can disable the log 
message by setting the property  to zero.)Ice.Warn.AMICallback

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass the callback instance to the begi
 method:n_

Java

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
e.begin_getName(99, cb); 

This is often written using an anonymous class instead:

Java

EmployeesPrx e = ...;

e.begin_getName(
        99,
        new Ice.AsyncCallback()
        {
            public void completed(Ice.AsyncResult r)
            {
                EmployeesPrx p = (EmployeesPrx)r.getProxy();
                try {
                    String name = p.end_getName(r);
                    System.out.println("Name is: " + name);
                } catch (Ice.LocalException ex) {
                    System.err.println("Exception: " + ex);
                }
            }
        });

https://doc.zeroc.com/display/Ice34/Ice+Warning+Properties#IceWarningProperties-Ice.Warn.AMICallback


Ice 3.4.2 Documentation

7 Copyright © 2017, ZeroC, Inc.

An anonymous class is useful particularly for callbacks that do only a small amount of work because the code that starts the call and the code that 
processes the results are physically close together.

Sharing State Between  and  Methods in Javabegin_ end_
It is common for the  method to require access to some state that is established by the code that calls the  method. As an example, end_ begin_
consider an application that asynchronously starts a number of operations and, as each operation completes, needs to update different user interface 
elements with the results. In this case, the  method knows which user interface element should receive the update, and the  method begin_ end_
needs access to that element.

Assuming that we have a  class that designates a particular user interface element, you could pass different widgets by storing the widget to Widget
be used as a member of your callback class:

Java

public class MyCallback extends Ice.AsyncCallback
{
    public MyCallback(Widget w)
    {
        _w = w;
    }

    private Widget _w;

    public void completed(Ice.AsyncResult r)
    {
        EmployeesPrx e = (EmployeesPrx)r.getProxy();
        try {
            String name = e.end_getName(r);
            _w.writeString(name);
        } catch (Ice.LocalException ex) {
            System.err.println("Exception is: " + ex);
        }
    }
}

For this example, we assume that widgets have a  method that updates the relevant UI element.writeString

When you call the  method, you pass the appropriate callback instance to inform the  method how to update the display:begin_ end_

Java

EmployeesPrx e = ...;
Widget widget1 = ...;
Widget widget2 = ...;

// Invoke the getName operation with different widget callbacks.
e.begin_getName(99, new MyCallback(widget1));
e.begin_getName(24, new MyCallback(widget2));

The callback class provides a simple and effective way for you to pass state between the point where an operation is invoked and the point where its 
results are processed. Moreover, if you have a number of operations that share common state, you can pass the same callback instance to multiple 
invocations. (If you do this, your callback methods may need to use synchronization.)

Type-Safe Completion Callbacks in Java
The  is not entirely type-safe:generic callback API

You must down-cast the return value of  to the correct proxy type before you can call the  method.getProxy end_



Ice 3.4.2 Documentation

8 Copyright © 2017, ZeroC, Inc.

You must call the correct  method to match the operation called by the  method.end_ begin_
You must remember to catch exceptions when you call the  method; if you forget to do this, you will not know that the operation failed.end_

slice2java generates an additional type-safe API that takes care of these chores for you. To use type-safe callbacks, you must implement a 
callback class that provides two callback methods:

a  method that is called if the operation succeedsresponse
an  method that is called if the operation raises an exceptionexception

Your callback class must derive from the base class that is generated by . The name of this base class is slice2java .Callback_<module> <inte
. Here is a callback class for an invocation of the  operation:_rface> <operation> getName

Java

public class MyCallback extends Demo.Callback_Employees_getName
{
    public void response(String name)
    {
        System.out.println("Name is: " + name);
    }

    public void exception(Ice.LocalException ex)
    {
        System.err.println("Exception is: " + ex);
    }
}

The  callback parameters depend on the operation signature. If the operation has non-  return type, the first parameter of the response void response
callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the corresponding Slice operation, in the 
order of declaration.

The  callback is invoked if the invocation fails because of an Ice run time exception. If the Slice operation can also raise user exceptions, exception
your callback class must supply an additional overloading of  that accepts an argument of type .exception Ice.UserException

The proxy methods are overloaded to accept this callback instance:

Java

Ice.AsyncResult begin_getName(int number,
                              Callback_Employees_getName __cb);

Ice.AsyncResult begin_getName(int number,
                              java.util.Map<String, String> __ctx,
                              Callback_Employees_getName __cb);

You pass the callback to an invocation as you would with the generic API:

Java

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
e.begin_getName(99, cb); 

Asynchronous Oneway Invocations in Java
You can invoke operations via oneway proxies asynchronously, provided the operation has  return type, does not have any out-parameters, and void
does not raise user exceptions. If you call the  method on a oneway proxy for an operation that returns values or raises a user exception, the begin_

 method throws an .begin_ IllegalArgumentException



Ice 3.4.2 Documentation

9 Copyright © 2017, ZeroC, Inc.

The callback methods looks exactly as for a twoway invocation. For the generic API, the Ice run time does not call the  callback method completed
unless the invocation raised an exception during the  method ("on the way out"). For the type-safe API, the  method is never called.begin_ response

Flow Control in Java
Asynchronous method invocations never block the thread that calls the  method: the Ice run time checks to see whether it can write the begin_
request to the local transport. If it can, it does so immediately in the caller's thread. (In that case,  returns true.) AsyncResult.sentSynchronously
Alternatively, if the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the request internally for later 
transmission in the background. (In that case,  returns false.)AsyncResult.sentSynchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests 
pile up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds some 
threshold, the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the , you can override the  method:generic API sent

Java

public class MyCallback extends Ice.AsyncCallback
{
    public void completed(Ice.AsyncResult r)
    {
        // ...
    }

    public void sent(Ice.AsyncResult r)
    {
        // ...
    }
}

You inform the Ice run time that you want to be informed when a call has been passed to the local transport as usual:

Java

e.begin_getName(99, new MyCallback());

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the  method from the thread that calls the sent begi
 method. On the other hand, if the run time has to queue the request, it calls the  method from a different thread once it has written the n_ sent

request to the local transport. In addition, you can find out from the  that is returned by the  method whether the request was AsyncResult begin_
sent synchronously or was queued, by calling .sentSynchronously

For the , the  method has the following signature:generic API sent

Java

void sent(Ice.AsyncResult r);

For the , the signature is:type-safe API

Java

void sent(boolean sentSynchronously);

For the generic API, you can find out whether the request was sent synchronously by calling  on the . For the sentSynchronously AsyncResult
type-safe API, the boolean  parameter provides the same information.sentSynchronously



Ice 3.4.2 Documentation

10 Copyright © 2017, ZeroC, Inc.

The  methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementing the sent
count when the Ice run time passes a request to the local transport.

Asynchronous Batch Requests in Java
Applications that send  can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flu

 performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message shBatchRequests
can be sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begin_ice_flushBatchRequests and  are proxy methods that flush any batch requests queued by that proxy.end_ice_flushBatchRequests

In addition, similar methods are available on the communicator and the  object that is returned by . Connection AsyncResult.getConnection
These methods flush batch requests sent via the same communicator and via the same connection, respectively.

Concurrency Semantics for AMI in Java
The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the  callback from the thread calling sent
the  method if the request could be sent synchronously. In the  callback, you know which thread is calling the callback by looking at the begin_ sent s

 member or parameter.entSynchronously

AMI Limitations in Java
AMI invocations cannot be sent using collocated optimization. If you attempt to invoke an AMI operation using a proxy that is configured to use colloca

, the Ice run time raises  if the servant happens to be collocated; the request is sent tion optimization CollocationOptimizationException
normally if the servant is not collocated. You can disable this optimization if necessary.

See Also

Request Contexts
Batched Invocations
Location Transparency

https://doc.zeroc.com/display/Ice34/Batched+Invocations
https://doc.zeroc.com/display/Ice34/Location+Transparency
https://doc.zeroc.com/display/Ice34/Location+Transparency
https://doc.zeroc.com/display/Ice34/Request+Contexts
https://doc.zeroc.com/display/Ice34/Batched+Invocations
https://doc.zeroc.com/display/Ice34/Location+Transparency

	Asynchronous Method Invocation (AMI) in Java

