
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.

3.
4.
5.

Using a Freeze Evictor in the File System Server
In this section, we present file system implementations that use a transactional evictor. The implementations are based on the ones discussed in Obje

, and in this section we only discuss code that illustrates use of the Freeze evictor.ct Life Cycle

In general, incorporating a Freeze evictor into your application requires the following steps:

Evaluate your existing Slice definitions for a suitable persistent object type.
If no suitable type is found, you typically define a new derived class that captures your persistent state requirements. Consider placing these
definitions in a separate file: they are only used by the server for persistence, and therefore do not need to appear in the "public" definitions
required by clients. Also consider placing your persistent types in a separate module to avoid name clashes.
If you use , generate code (using or) for your new definitions.indexes with your evictor slice2freeze slice2freezej
Create an evictor and register it as a servant locator with an object adapter.
Create instances of your persistent type and register them with the evictor.

Persistent Types for File System Evictor
Fortunately, it is unnecessary for us to change any of the existing file system Slice definitions to incorporate the Freeze evictor. However, we do need
to add metadata definitions to inform the evictor which :operations modify object state

Slice

module Filesystem {
 // ...

 interface Node {
 idempotent string name();

 ["freeze:write"]
 void destroy() throws PermissionDenied;
 };

 // ...

 interface File extends Node {
 idempotent Lines read();

 ["freeze:write"]
 idempotent void write(Lines text) throws GenericError;
 };

 // ...

 interface Directory extends Node {
 idempotent NodeDescSeq list();

 idempotent NodeDesc find(string name) throws NoSuchName;

 ["freeze:write"]
 File* createFile(string name) throws NameInUse;

 ["freeze:write"]
 Directory* createDirectory(string name) throws NameInUse;
 };
};

These definitions are identical to the original ones, with the exception of the added directives.["freeze:write"]

The remaining definitions are in derived classes:

https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-IndexinganEvictorDatabase
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-DetectingUpdatestoPersistentState

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

#include <Filesystem.ice>

module Filesystem {
 class PersistentDirectory;

 class PersistentNode implements Node {
 string nodeName;
 PersistentDirectory* parent;
 };

 class PersistentFile extends PersistentNode implements File {
 Lines text;
 };

 dictionary<string, NodeDesc> NodeDict;

 class PersistentDirectory extends PersistentNode implements Directory {
 ["freeze:write"]
 void removeNode(string name);

 NodeDict nodes;
 };
};

As you can see, we have sub-classed all of the file system interfaces. Let us examine each one in turn.

The class adds two data members: and .PersistentNode nodeName parent

The file system implementation requires that a child node knows its parent node in order to properly implement the operation. Previous destroy
implementations had a state member of type , but that is not workable here. It is no longer possible to pass the parent node to the child DirectoryI
node's constructor because the evictor may be instantiating the child node (via a factory), and the parent node will not be known. Even if it were
known, another factor to consider is that there is no guarantee that the parent node will be active when the child invokes on it, because the evictor
may have evicted it. We solve these issues by storing a proxy to the parent node. If the child node invokes on the parent node via the proxy, the
evictor automatically activates the parent node if necessary.

The class is very straightforward, simply adding a member representing the contents of the file. Notice that the class PersistentFile text
extends , and therefore inherits the state members declared by the base class.PersistentNode

Finally, the class defines the operation, and adds the state member representing the immediate PersistentDirectory removeNode nodes
children of the directory node. Since a child node contains only a proxy for its parent, and not a reference to an PersistentDirectory
implementation class, there must be a Slice-defined operation that can be invoked when the child is destroyed.

If we had followed our earlier advice, we would have defined , , and classes in a separate module, Node File Directory PersistentFilesystem
but in this example we use the existing module for the sake of simplicity.Filesystem

Topics

Adding an Evictor to the C++ File System Server
Adding an Evictor to the Java File System Server

See Also

Object Life Cycle
Freeze Evictors
Freeze Evictor Concepts

We used instead of because is already used as an operation in the interface.nodeName name name Node

https://doc.zeroc.com/pages/viewpage.action?pageId=14680503
https://doc.zeroc.com/display/Ice35/Adding+an+Evictor+to+the+Java+File+System+Server
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/Freeze+Evictors
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts

	Using a Freeze Evictor in the File System Server

