
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

Setting up a Certificate Authority
During development, it is convenient to have a simple way of creating new certificates. OpenSSL includes all of the necessary infrastructure for
setting up your own certificate authority (CA), but it requires getting more familiar with OpenSSL than is really necessary. To simplify the process, Ice
includes the Python script , located in the subdirectory of your Ice installation, that hides the complexity of OpenSSL and allows you to iceca bin
quickly perform the essential tasks:

initializing a new root CA
generating new certificate requests
signing certificate requests to create a valid certificate chain
converting certificates to match platform-specific requirements.

You are not obligated to use this script; IceSSL accepts certificates from any source as long as they are provided in the appropriate formats.
However, you may find this tool sufficient for your development needs, and possibly even for your deployed application as well.

On this page:

Initializing a Certificate Authority
Generating Certificate Requests
Signing Certificate Requests
Importing Certificates
Certificate Authority Diagnostics

Initializing a Certificate Authority
Some of the script's activities use a directory that contains configuration files and a database of issued certificates. The script selects a default
location for this directory that depends on your platform, or you can specify the parent directory explicitly by defining the environment ICE_CA_HOME
variable and the script will use for its files.$ICE_CA_HOME/ca

The script command initializes a new CA by preparing a database directory and generating the root CA certificate and private key. It iceca init
accepts the following command-line arguments:

$ python iceca init [--no-password] [--overwrite]

Upon execution, the script first checks the database directory to determine whether it has already been initialized. If so, the script terminates
immediately with a warning unless you specify the option, in which case the script overwrites the previous contents of the directory.--overwrite

Next, the script displays the database directory it is using and begins to prompt you for the information it needs to generate the root CA certificate and
private key. It offers a default choice for the CA's distinguished name and allows you to change it:

The subject name for your CA will be
CN=Grid-CA , O=GridCA-server
Do you want to keep this as the CA subject name? (y/n) [y]

To specify an alternate value for the distinguished name, enter and type the new information, otherwise hit Enter to proceed.n

Enter the email address of the CA: ca-admin@company.com

The address you provide in response to this prompt is shown to users that create certificate requests. Enter the address to which such requests
should be sent.

The script shows its progress as it generates the certificate and private key, then prompts you for a pass phrase. If you prefer not to secure your CA's
private key with a pass phrase, use the option when starting the script.--no-password

Upon completion, the script emits the following instructions:

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

The CA is initialized.

You need to distribute the following files to all machines that
can request certificates:

C:\iceca\req.cnf
C:\iceca\ca_cert.pem

These files should be placed in the user's home directory in
~/.iceca. On Windows, place these files in <ice-install>/config.

In this example, the environment variable was set to . As the script states, the files and must be ICE_CA_HOME C:\iceca req.cnf ca_cert.pem
present on each host that can generate a certificate request. The script suggests a location for these files, which is the default directory used by the
scripts if is not defined.ICE_CA_HOME

The file contains the root CA's certificate. Your IceSSL configurations must identify this certificate (in its proper form for each platform) ca_cert.pem
as a trusted certificate. For example, you can use this file directly in the configuration of the C++ plug-in:

IceSSL.CertAuthFile=C:\iceca\ca_cert.pem

For .NET applications, you should into the proper store.import the certificate file

In Java, you need to add the certificate to your truststore:

$ keytool -import -trustcacerts -file ca_cert.pem -keystore ca.jks
Enter keystore password:

The keytool program requires you to enter a password, which you could use as the value of the property .IceSSL.TruststorePassword

Now that your certificate authority is initialized, you can begin generating certificate requests.

Generating Certificate Requests
The script command uses the files you created while to generate a request for a new certificate. It accepts the iceca request initializing the CA
following command-line arguments:

$ python iceca request [--overwrite] [--no-password] file common-name [email]

The script looks for the files and in the directory defined by the environment variable. If that variable is not req.cnf ca_cert.pem ICE_CA_HOME
defined, the script uses a default directory that depends on your platform.

The purpose of the script is to generate two files: a private key and a file containing the certificate request. The request file must be transmitted to the
certificate authority for signing, which produces a valid certificate chain.

The argument is used as a prefix for the names of the two output files created by the script:file

file_key.pem contains the private key
file_req.pem contains the certificate request

If the output files already exist, you must specify to force the script to overwrite them.--overwrite

The argument defines the common name component of the certificate's distinguished name. If the optional argument is common-name email
provided, it is also included in the certificate request.

During execution, the script displays its progress as it generates the necessary files. It will prompt you for a pass phrase unless you used the --no-
 option, and finish by showing the names of the files it created as well as instructions on how to proceed. The example below shows the password

output from generating a request for an IceGrid node using a filename prefix of :node

https://doc.zeroc.com/display/Ice34/Configuring+IceSSL#ConfiguringIceSSL-.NETConfigurationforIceSSL
https://doc.zeroc.com/display/Ice34/IceSSL+Properties#IceSSLProperties-IceSSL.TruststorePassword

Ice 3.4.2 Documentation

3 Copyright © 2017, ZeroC, Inc.

$ iceca request node "IceGrid Node"

Created key: node_key.pem
Created certificate request: node_req.pem

The certificate request must be signed by the CA. Send the
certificate request file to the CA at the following email
address:
ca-admin@company.com

The file is the new private key for the node; this file must be kept secure. The file must be given to the certificate node_key.pem node_req.pem
authority. As a convenience, the script displays the CA's email address that you entered .during initialization

Signing Certificate Requests
As a certificate authority, you are responsible for certifying the validity of certificate requests by signing them with your private key. The product of
signing a request is a valid certificate chain that a person or application can use as an identity. The command performs this task for you iceca sign
and accepts the following command-line arguments:

$ python iceca sign [--overwrite] --in <req> --out <cert> [--ip <ip> --dns <dns>]

The input file is the certificate request, and the output file is the resulting certificate chain. The script does not overwrite the file req cert cert
unless you also specify . The and options allow you to add subject alternative names to the certificate for IP and DNS --overwrite --{ip --dns
addresses, respectively.

Continuing our , we can sign the node's request with the following command:previous example

$ python iceca sign --in node_req.pem --out node_cert.pem

If the CA's private key is protected by a pass phrase, we must enter that first. Next, the script displays the relevant information from the certificate
request and asks you to confirm that you wish to sign the certificate:

The Subject's Distinguished Name is as follows
organizationName :PRINTABLE:'Company.com'
commonName :PRINTABLE:'IceGrid Node TestNode'
Certificate is to be certified until Jun 15 18:32:36 2011 GMT
Sign the certificate? [y/n]:

After reviewing the request, enter to sign the certificate, and again to finish the process. Upon completion, the script stores the certificate chain in y y
the file in your current working directory. This file, together with the node's private key we created when , node_cert.pem generating the request
establishes a secure identity for the node.

Importing Certificates
For Java and .NET users, the private key and certificate chain must be converted into a suitable format for your platform. The script command iceca

 simplifies this process and accepts the following command-line arguments:import

$ python iceca import [--overwrite] [--key-pass password] [--store-pass password]
 [--java alias cert key keystore] [--cs cert key out-file]

The script does not overwrite an existing file unless you specify . To avoid interactive prompts for passwords, you can use the --overwrite --key-
 option to specify the password for the private key, and the option to define the password for the Java keystore. Completing our pass --store-pass

node example from prior sections, the command below imports the private key and certificate chain into a Java keystore:

$ python iceca import --java mycert node_cert.pem node_key.pem cert.jks

Ice 3.4.2 Documentation

4 Copyright © 2017, ZeroC, Inc.

The value represents the alias associated with this entry in the keystore, and is the name of the new keystore file. In an IceSSL mycert cert.jks
configuration, the property refers to this file.IceSSL.Keystore

The equivalent command for .NET is shown below:

$ python iceca import --cs node_cert.pem node_key.pem cert.pfx

The file uses the PKCS#12 encoding and contains the certificate chain and private key. You can import this certificate into a store, or refer cert.pfx
directly to the file using the configuration property .IceSSL.CertFile

Certificate Authority Diagnostics
If you encounter a problem while using the script, or simply want to learn more about the underlying OpenSSL commands used by the script, iceca
you can run the script with the option as shown below:--verbose

$ python iceca --verbose command ...

This option causes the script to display the commands as it executes them.

The script creates temporary files and directories that are normally deleted prior to the script's completion. If you would like to examine the contents
of these files and directories, use the option:--keep

$ python iceca --keep command ...

See Also

Configuring IceSSL

https://doc.zeroc.com/display/Ice34/IceSSL+Properties#IceSSLProperties-IceSSL.Keystore
https://doc.zeroc.com/display/Ice34/IceSSL+Properties#IceSSLProperties-IceSSL.CertFile
https://doc.zeroc.com/display/Ice34/Configuring+IceSSL

	Setting up a Certificate Authority

