
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Transactional Evictor
Freeze provides two types of evictors. This page describes the transactional evictor.

On this page:

Overview of the Transactional Evictor
Creating a Transactional Evictor
Read and Write Operations
Synchronization Semantics for the Transactional Evictor
Transaction Propagation
Commit or Rollback on User Exception
Database Deadlocks and Automatic Retries
AMD and the Transactional Evictor
Transactions and Freeze Maps

Overview of the Transactional Evictor
A transactional evictor maintains a servant map, but only keeps read-only servants in this map. The state of these servants corresponds to the latest
data on disk. Any servant creation, update, or deletion is performed within a database transaction. This transaction is committed (or rolled back)
immediately, typically at the end of the dispatch of the current operation, and the associated servants are then discarded.

With such an evictor, you can ensure that several updates, often on different servants (possibly managed by different transactional evictors) are
grouped together: either all or none of these updates occur. In addition, updates are written almost immediately, so crash recovery is a lot simpler:
few (if any) updates will be lost, and you can maintain consistency between related persistent objects.

However, an application based on a transactional evictor is likely to write a lot more to disk than an application with a background save evictor, which
may have an adverse impact on performance.

Creating a Transactional Evictor
You create a transactional evictor in C++ with the global function , and in Java with the static method Freeze::createTransactionalEvictor Fr

.eeze.Util.createTransactionalEvictor

For C++, the signatures are as follows:

Freeze also provides a , with different persistence semantics. The on-disk format of these two types of evictors is background save evictor
the same: you can switch from one type of evictor to the other without any data transformation.

https://doc.zeroc.com/display/Ice35/Background+Save+Evictor

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

typedef map<string, string> FacetTypeMap;

TransactionalEvictorPtr
createTransactionalEvictor(
 const ObjectAdapterPtr& adapter,
 const string& envName,
 const string& filename,
 const FacetTypeMap& facetTypes = FacetTypeMap(),
 const ServantInitializerPtr& initializer = 0,
 const vector<IndexPtr>& indexes = vector<IndexPtr>(),
 bool createDb = true);

TransactionalEvictorPtr
createTransactionalEvictor(
 const ObjectAdapterPtr& adapter,
 const string& envName,
 DbEnv& dbEnv,
 const string& filename,
 const FacetTypeMap& facetTypes = FacetTypeMap(),
 const ServantInitializerPtr& initializer = 0,
 const vector<IndexPtr>& indexes = vector<IndexPtr>(),
 bool createDb = true);

For Java, the method signatures are:

Java

public static TransactionalEvictor
createTransactionalEvictor(
 Ice.ObjectAdapter adapter,
 String envName,
 String filename,
 java.util.Map facetTypes,
 ServantInitializer initializer,
 Index[] indexes,
 boolean createDb);

public static TransactionalEvictor
createTransactionalEvictor(
 Ice.ObjectAdapter adapter,
 String envName,
 com.sleepycat.db.Environment dbEnv,
 String filename,
 java.util.Map facetTypes,
 ServantInitializer initializer,
 Index[] indexes,
 boolean createDb);

Both C++ and Java provide two overloaded functions: in one case, Freeze opens and manages the underlying Berkeley DB environment; in the other
case, you provide a object that represents a Berkeley DB environment you opened yourself. (Usually, it is easier to let Freeze take care of all DbEnv
interactions with Berkeley DB.)

The parameter represents the name of the underlying Berkeley DB environment, and is also used as the default Berkeley DB home envName
directory. (See .)Freeze.DbEnv. .DbHomeenv-name

The parameter represents the name of the Berkeley DB database file associated with this evictor. The persistent state of all your servants filename
is stored in this file.

The parameter allows you to specify a single class type (Slice string) for each facet in your new evictor (see below). Most facetTypes type ID
applications use only the default facet, represented by an empty string. This parameter is optional in C++; in Java, pass if you do not want to null
specify such a facet-to-type mapping.

https://doc.zeroc.com/display/Ice35/Freeze+Properties#FreezeProperties-Freeze.DbEnv.env-name.DbHome
https://doc.zeroc.com/display/Ice35/Type+IDs

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

The parameter represents the . It is an optional parameter in C++; in Java, pass if you do not need a servant initializer servant initializer null
initializer.

The parameter is a vector or array of . It is an optional parameter in C++; in Java, pass if your evictor does not define indexes evictor indexes null
an index.

Finally, the parameter tells Freeze what to do when the corresponding Berkeley DB database does not exist. When true, Freeze creates a createDb
new database; when false, Freeze raises a .Freeze::DatabaseException

Read and Write Operations
When a transactional evictor processes an incoming request without an associated transaction, it first needs to find out whether the corresponding
operation is (as specified by the and operation metadata). This is straightforward if the read-only or read-write "freeze:read" "freeze:write"
evictor knows the target's type; in this case, it simply instantiates and keeps a "dummy" servant to look up the attributes of each operation.

However, if the target type can vary, the evictor needs to look up and sometimes load a read-only servant to find this information. For read-write
requests, it will then load the servant from disk a second time (within a new transaction). Once the transaction commits, the read-only servant —
sometimes freshly loaded from disk — is discarded.

When you create a transactional evictor with , you can pass a facet name to type ID map to associate a single createTransactionalEvictor
servant type with each facet and speed up the retrieval of these operation attributes.

Synchronization Semantics for the Transactional Evictor
With a transactional evictor, there is no need to perform any synchronization on the servants managed by the evictor:

For read-only operations, the application must not modify any data member, and hence there is no need to synchronize. (Many threads can
safely read the same data members concurrently.)
For read-write operations, each operation dispatch gets its own private servant or servants (see transaction propagation below).

Not having to worry about synchronization can dramatically simplify your application code.

Transaction Propagation
Without a distributed transaction service, it is not possible to invoke several remote operations within the same transaction. Nevertheless, Freeze
supports transaction propagation for collocated calls: when a request is dispatched within a transaction, the transaction is associated with the
dispatch thread and will propagate to any other servant reached through a collocated call. If the target of a collocated call is managed by a
transactional evictor associated with the same database environment, Freeze reuses the propagated transaction to load the servant and dispatch the
request. This allows you to group updates to several servants within a single transaction.

You can also control how a transactional evictor handles an incoming transaction through optional metadata added after and "freeze:write" "fre
. There are six valid directives:eze:read"

freeze:read:never
Verify that no transaction is propagated to this operation. If a transaction is present, the transactional evictor raises a Freeze::

.DatabaseException

freeze:read:supports
Accept requests with or without a transaction, and re-use the transaction if present. is the default for "supports" "freeze:read"
operations.

freeze:read:mandatory and freeze:write:mandatory
Verify that a transaction is propagated to this operation. If there is no transaction, the transactional evictor raises a Freeze::

.DatabaseException

freeze:read:required and freeze:write:required
Accept requests with or without a transaction, and re-use the transaction if present. If no transaction is propagated, the transactional evictor
creates a new transaction before dispatching the request. is the default for operations."required" "freeze:write"

Commit or Rollback on User Exception
When a transactional evictor processes an incoming read-write request, it starts a new database transaction, loads a servant within the transaction,
dispatches the request, and then either commits or rolls back the transaction depending on the outcome of this dispatch. If the dispatch does not
raise an exception, the transaction is committed just before the response is sent back to the client. If the dispatch raises a system exception, the
transaction is rolled back. If the dispatch raises a user exception, by default, the transaction is committed. However, you can configure Freeze to
rollback on user-exceptions by setting to a non-zero value.Freeze.Evictor. .RollbackOnUserExceptionenv-name.fileName

https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-UsingaServantInitializer
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-IndexinganEvictorDatabase
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts#FreezeEvictorConcepts-DetectingUpdatestoPersistentState

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Database Deadlocks and Automatic Retries
When reading and writing in separate concurrent transactions, deadlocks are likely to occur. For example, one transaction may lock pages in a
particular order while another transaction locks the same pages in a different order; the outcome is a deadlock. Berkeley DB automatically detects
such deadlocks, and "kills" one of the transactions.

With a Freeze transactional evictor, the application does not need to catch any deadlock exceptions or retry when deadlock occurs because the
transactional evictor automatically retries its transactions whenever it encounters a deadlock situation.

However, this can affect how you implement your operations: for any operation called within a transaction (mainly read-write operations), you must
anticipate the possibility of several calls for the same request, all in the same dispatch thread.

AMD and the Transactional Evictor
When a transactional evictor dispatches a read-write operation implemented using AMD, it starts a transaction before dispatching the request, and
commits or rolls back the transaction when the dispatch is done. Two threads are involved here: the and the . The dispatch thread callback thread
dispatch thread is a thread from an Ice thread pool tasked with dispatching a request, and the callback thread is the thread that invokes the AMD
callback to send the response to the client. These threads may be one and the same if the servant invokes the AMD callback from the dispatch
thread.

It is important to understand the threading semantics of an AMD request with respect to the transaction:

If a successful AMD response is sent from the dispatch thread, the transaction is committed the response is sent. If a deadlock occurs after
during this commit, the request is not retried and the client receives no indication of the failure.
If a successful AMD response is sent from another thread, the evictor commits its transaction when the dispatch thread completes,
regardless of whether the servant has sent the AMD response. The callback thread waits until the transaction has been committed by the
dispatch thread before sending the response.
If a commit results in a deadlock and the AMD response has not yet been sent, the evictor cancels the original AMD callback and
automatically retries the request again with a new AMD callback. Invocations on the original AMD callback are ignored (and ice_response

 on this callback do nothing).ice_exception
Otherwise, if the servant sends an exception via the AMD callback, the response is sent directly to the client.

Transactions and Freeze Maps
A transactional evictor uses the same transaction objects as , which allows you to update a Freeze map within a transaction managed Freeze maps
by a transactional evictor.

You can get the current transaction created by a transactional evictor by calling . Then, you would typically retrieve the getCurrentTransaction
associated Freeze connection (with) and construct a Freeze map using this connection:getConnection

Slice

local interface TransactionalEvictor extends Evictor {
 Transaction getCurrentTransaction();
 void setCurrentTransaction(Transaction tx);
};

A transactional evictor also gives you the ability to associate your own transaction with the current thread, using . This is setCurrentTransaction
useful if you want to perform many updates within a single transaction, for example to add or remove many servants in the evictor. (A less convenient
alternative is to implement all such updates within a read-write operation on some object.)

See Also

Background Save Evictor
Type IDs
Freeze Evictor Concepts
Freeze Maps

https://doc.zeroc.com/display/Ice35/Freeze+Maps
https://doc.zeroc.com/display/Ice35/Background+Save+Evictor
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Freeze+Evictor+Concepts
https://doc.zeroc.com/display/Ice35/Freeze+Maps

	Transactional Evictor

