
Ice 3.4.2 Documentation

1 Copyright © 2017, ZeroC, Inc.

The C++ Timer and TimerTask Classes
The class allows you to schedule some code for once-only or repeated execution after some time interval elapses. The code to be executed Timer
resides in a class you derive from :TimerTask

C++

class Timer;
typedef IceUtil::Handle<Timer> TimerPtr;

class TimerTask : virtual public IceUtil::Shared {
public:
 virtual ~TimerTask() { }
 virtual void runTimerTask() = 0;
};

typedef IceUtil::Handle<TimerTask> TimerTaskPtr;

Your derived class must override the member function; the code in this method is executed by the timer. If the code you want to run runTimerTask
requires access to some program state, you can pass that state into the constructor of your class or, alternatively, set that state via member functions
of your class before scheduling it with a timer.

The class invokes the member function to run your code. The class has the following definition:Timer runTimerTask

C++

class Timer : /* ... */ {
public:
 Timer();
 Timer(int priority);

 void schedule(const TimerTaskPtr& task, const IceUtil::Time& interval);

 void scheduleRepeated(const TimerTaskPtr& task, const IceUtil::Time& interval);

 bool cancel(const TimerTaskPtr& task);

 void destroy();
};

typedef IceUtil::Handle<Timer> TimerPtr;

Intervals are specified using objects.Time

The constructor is overloaded to allow you specify a . The priority controls the priority of the thread that executes your task.thread priority

The member function schedules an instance of your timer task for once-only execution after the specified time interval has elapsed. Your schedule
code is executed by a separate thread that is created by the class. The function throws an if you invoke it on Timer IllegalArgumentException
a destroyed timer.

The member function runs your task repeatedly, at the specified time interval. Your code is executed by a separate thread that scheduleRepeated
is created by the class; the same thread is used every time your code runs. The function throws an if you Timer IllegalArgumentException
invoke it on a destroyed timer.

If your code throws an exception, the class ignores the exception, that is, for a task that is scheduled to run repeatedly, an exception in the Timer
current execution does not cancel the next execution.

If your code takes longer to execute than the time interval you have specified for repeated execution, the second execution is delayed accordingly.
For example, if you ask for repeated execution once every five seconds, and your code takes ten seconds to complete, then the second execution of
your task starts five seconds after the previous execution finishes, that is, the interval specifies the wait time between successive executions.

A instance that has already been scheduled with a instance cannot be scheduled again with the same instance until the TimerTask Timer Timer
task has completed or been canceled.

https://doc.zeroc.com/pages/viewpage.action?pageId=5047945
https://doc.zeroc.com/pages/viewpage.action?pageId=5048232#TheC++ThreadClasses-Thread

Ice 3.4.2 Documentation

2 Copyright © 2017, ZeroC, Inc.

For a single instance, the execution of all registered tasks is serialized. The wait interval applies on a per-task basis so, if you schedule task A Timer
at an interval of five seconds, and task B at an interval of ten seconds, successive runs of task A start no sooner than five seconds after the previous
task A has finished, and successive runs of task B start no sooner than ten seconds after the previous task B has finished. If, at the time a task is
scheduled to run, another task is still running, the new task's execution is delayed until the previous task has finished.

If you want scheduled tasks to run concurrently, you can create several instances; tasks then execute in as many threads concurrently as Timer
there are instances.Timer

The member function removes a task from a timer's schedule. In other words, it stops a task that is scheduled from being executed. If you cancel
cancel a task while it is executing, returns immediately and the currently running task is allowed to complete normally; that is, does cancel cancel
not wait for any currently running task to complete.

The return value is true if removed the task from the schedule. This is the case if you invoke on a task that is scheduled for cancel cancel
repeated execution and this was the first time you cancelled that task; subsequent calls to return false. Calling on a task scheduled cancel cancel
for once-only execution always returns false, as does calling on a destroyed timer.cancel

The member function removes all tasks from the timer's schedule. If you call from any thread other than the timer's own destroy destroy
execution thread, it joins with the currently executing task (if any), so the function does not return until the current task has completed. If you call dest

 from the timer's own execution thread, it instead detaches the timer's execution thread. Calling a second time on the same roy destroy Timer
instance has no effect. Similarly, calling on a destroyed timer has no effect.cancel

Note that you must call on a instance before allowing it to go out of scope; failing to do so causes undefined behavior.destroy Timer

Calls to or on a destroyed timer raises an .schedule scheduleRepeated IceUtil::IllegalArgumentException

See Also

The C++ Time Class
The C++ Thread Classes

https://doc.zeroc.com/pages/viewpage.action?pageId=5047945
https://doc.zeroc.com/pages/viewpage.action?pageId=5048232

	The C++ Timer and TimerTask Classes

