
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Enumerations

Enumeration Syntax and Semantics
A Slice enumerated type definition looks identical to C++:

Slice

enum Fruit { Apple, Pear, Orange };

This definition introduces a type named that becomes a new type in its own right. Slice guarantees that the values of enumerators increase Fruit
from left to right, so compares less than in every language mapping. By default, the first enumerator has a value of zero, with Apple Pear
sequentially increasing values for subsequent enumerators.

Slice enumerator symbols enter the enclosing namespace scope, so the following is illegal:

Slice

enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP }; // Apple redefined

The example below shows how to refer to an enumerator from a different scope:

Slice

module M {
 enum Color { red, green, blue };
};
module N {
 struct Pixel {
 M::Color c = M::blue;
 };
};

Slice does not permit empty enumerations.

Custom Enumerator Values
Slice also permits you to assign custom values to enumerators:

Slice

const int PearValue = 7;
enum Fruit { Apple = 0, Pear = PearValue, Orange };

Custom values must be unique and non-negative, and may refer to Slice constants of integer types. If no custom value is specified for an
enumerator, its value is one greater than the enumerator that immediately precedes it. In the example above, has the value 8.Orange

Slice does not require custom enumerator values to be declared in increasing order:

Slice

enum Fruit { Apple = 5, Pear = 3, Orange = 1 }; // Legal

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Note however that when there is an inconsistency between the declaration order and the numerical order of the enumerators, the behavior of
comparison operations may vary between language mappings.

See Also

Structures
Sequences
Dictionaries
Constants and Literals

For an application that is still using version 1.0 of the , changing the definition of an enumerated type may break backward Ice encoding
compatibility with existing applications. For more information, please refer to the encoding rules for enumerated types.

https://doc.zeroc.com/display/Ice35/Structures
https://doc.zeroc.com/display/Ice35/Sequences
https://doc.zeroc.com/display/Ice35/Dictionaries
https://doc.zeroc.com/display/Ice35/Constants+and+Literals
https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding

	Enumerations

