
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Configuring IceBox Services
On this page:

Installing an IceBox Service
IceBox Service Configuration in C++
IceBox Service Configuration in Java
IceBox Service Configuration in C#
Load Order for IceBox Services
Using a Shared Communicator
Inheriting Properties from the IceBox Server
Logging Considerations for IceBox Services

Installing an IceBox Service
A service is configured into an IceBox server using a single property. This property serves several purposes: it defines the name IceBox.Service
of the service, it provides the server with the service entry point, and it defines properties and arguments for the service.

The format of the property is shown below:

IceBox.Service.name=entry_point [args]

The component of the property key is the service name (IceStorm, in this example). This name is passed to the service's operation, and name start
must be unique among all services configured in the same IceBox server. It is possible, though rarely necessary, to load two or more instances of the
same service under different names.

The first argument in the property value is the entry point specification. Any arguments following the entry point specification are examined. If an
argument has the form , then it is interpreted as a property definition that appears in the property set of the communicator passed to --name=value
the service operation. These arguments are removed, and any remaining arguments are passed to the operation in the start start args
parameter.

IceBox Service Configuration in C++
For a C++ service, the must have the form , where is the simple name of the service's shared library or DLL, entry point library[,version]:symbol library
and is the name of the entry point function. A "simple name" is one without any platform-specific prefixes or extensions; the server adds symbol
appropriate decorations depending on the platform. The simple name may include a leading path, and the version is optional. If specified, the version
is embedded in the library name.

As an example, here is how we could configure , which is implemented as an IceBox service in C++:IceStorm

IceBox.Service.IceStorm=IceStormService,35:createIceStorm

IceBox uses the information provided in the entry point specification to compose a library name. For the IceStorm example shown above, IceBox on
Windows would compose the library name . If IceBox is compiled with debug information, it appends a to the library IceStormService35.dll d
name, so the name becomes instead.IceStormService35d.dll

If the simple name does not include a leading path, the shared library or DLL must reside in a directory that appears in on Windows or the PATH
shared library search path (such as) on POSIX systems.LD_LIBRARY_PATH

The entry point function, , must have the signature that we originally presented in our :symbol example

C++

extern "C" IceBox::Service* function(Ice::CommunicatorPtr);

The exact name of the library that is loaded depends on the naming conventions of the platform IceBox executes on. For example, on an
OS X machine, the library name is .libIceStormService35.dylib

https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.Service.name
https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.Service.name
https://doc.zeroc.com/display/Ice35/IceStorm
https://doc.zeroc.com/display/Ice35/Developing+IceBox+Services#DevelopingIceBoxServices-cpp

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.
3.

1.
2.

The communicator instance passed to this function is the IceBox server's communicator and should only be used for administrative purposes. For
example, the entry point function could use this communicator's logger to display log messages. For a service's normal operations, it must use the
communicator that it receives as an argument to its method.start

Here is a sample configuration for our C++ service:

IceBox.Service.Hello=HelloService:create --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named . The service is expected to reside in on Windows or Hello HelloService.dll libHe
 on Linux, and the entry point function is invoked to create an instance of the service. The argument lloService.so create --Ice.Trace.

 is converted into a property definition, and the arguments and become the two elements in the sequence parameter Network=1 hello there args
that is passed to the method.start

IceBox Service Configuration in Java
For a Java service, the is typically the class name (including any package) of the service implementation class, but may also include a entry point
leading path to a class directory or JAR file. The class must define a public constructor.

To instantiate the service, the IceBox server first checks to see if the service defines a constructor taking an argument of type . Ice.Communicator
If so, the service invokes this constructor and passes the server's communicator, which should only be used for administrative purposes. For
example, the constructor could use this communicator's logger to display log messages. For a service's normal operations, it must use the
communicator that it receives as an argument to its method.start

If the service does not define a constructor taking an argument, the server invokes the service's default constructor.Ice.Communicator

Here is a sample configuration for our :Java example

IceBox.Service.Hello=HelloServiceI --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named . The service is expected to reside in the class . The argument Hello HelloServiceI -
 is converted into a property definition, and the arguments and become the two elements in the -Ice.Trace.Network=1 hello there args

sequence parameter that is passed to the method.start

IceBox Service Configuration in C#
The of a .NET service has the form . The component can be a partially or fully qualified assembly name, entry point assembly:class assembly

such as , or an assembly DLL name such as that may optionally include a leading hello,Version=0.0.0.0,Culture=neutral hello.dll

relative or absolute path name.

The locations that are searched for the assembly depend on how you define the component:assembly

Value for assembly Example Semantics

Fully-qualified assembly name
(strong-named assembly)

hello,Version=...,
Culture=neutral,
publicKeyToken=...

Checks assemblies that have already been loaded
Searches the Global Assembly Cache (GAC)
Searches the directory containing the executableiceboxnet

Partially-qualified assembly
name

hello
Checks assemblies that have already been loaded
Searches the directory containing the executableiceboxnet

Relative path name services\MyService.dll Path name is relative to 's current working directory. Be iceboxnet
sure to include the extension in the path name..dll

Absolute path name C:\services\MyService.dll Assembly must reside at the specified path name. Be sure to include
the extension in the path name..dll

See MSDN for more information on .how the CLR locates assemblies

The component is the complete class name of the service implementation class, which must define a public constructor.class

https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.Service.name
https://doc.zeroc.com/display/Ice35/Developing+IceBox+Services#DevelopingIceBoxServices-java
https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.Service.name
http://msdn.microsoft.com/en-us/library/yx7xezcf(v=vs.71).aspx

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

To instantiate the service, the IceBox server first checks to see if the service defines a constructor taking an argument of type . Ice.Communicator
If so, the service invokes this constructor and passes the server's communicator, which should only be used for administrative purposes. For
example, the constructor could use this communicator's logger to display log messages. For a service's normal operations, it must use the
communicator that it receives as an argument to its method.start

If the service does not define a constructor taking an argument, the server invokes the service's default constructor.Ice.Communicator

Here is a sample configuration for our :C# example

IceBox.Service.Hello=helloservice.dll:HelloServiceI --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named . The service is expected to reside in the assembly named , Hello helloservice.dll
implemented by the class . The argument is converted into a property definition, and the arguments HelloServiceI --Ice.Trace.Network=1 he

 and become the two elements in the sequence parameter that is passed to the method.llo there args start

Load Order for IceBox Services
By default, the server loads the configured services in an undefined order, meaning services in the same IceBox server should not depend on one
another. If services must be loaded in a particular order, the property can be used:IceBox.LoadOrder

IceBox.LoadOrder=Service1,Service2

In this example, is loaded first, followed by . Any remaining services are loaded after , in an undefined order. Each Service1 Service2 Service2
service mentioned in must have a matching property.IceBox.LoadOrder IceBox.Service

During shutdown, services are stopped in the reverse of the order in which they were loaded.

Using a Shared Communicator
IceBox creates a separate communicator instance for each service by default in order to minimize the chances of accidental conflicts among
services. You can optionally specify that certain services use a shared communicator instead by setting IceBox.UseSharedCommunicator.name
properties in the server's configuration:

IceBox.Service.Hello=...
IceBox.Service.Printer=...
IceBox.UseSharedCommunicator.Hello=1
IceBox.UseSharedCommunicator.Printer=1

IceBox prepares the property set of this shared communicator as follows:

If services , the property set initially contains the server's properties (excluding), inherit the server's properties Ice.Admin.Endpoints
otherwise the property set starts out empty.
For each service that uses the shared communicator:

Merge its properties into the shared property set, overwriting any existing properties with the same names
Remove any properties from the shared property set that the service explicitly clears. For example, the definition
Ice.Trace.Network=
clears any existing setting of in the shared property set.Ice.Trace.Network
Translate service-specific command-line settings into properties (e.g.,)--Hello.Debug=1

Service properties are merged in the same order as the . As a result, the final value of a property that is defined by multiple services are loaded
services depends on the order in which those services are loaded. Let's expand our example to demonstrate this behavior:

A common use case for sharing a communicator between two or more services is enabling the use of for collocation optimizations
invocations among those services. This optimization is not possible with the default behavior that creates a new communicator for each
service.

https://doc.zeroc.com/display/Ice35/Developing+IceBox+Services#DevelopingIceBoxServices-cs
https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.LoadOrder
https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.UseSharedCommunicator.name
https://doc.zeroc.com/display/Ice35/Location+Transparency

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

File: server.cfg
IceBox.Service.Hello=... --Ice.Config=hello.cfg --Hello.Debug=1
IceBox.Service.Printer=... --Ice.Config=printer.cfg
IceBox.UseSharedCommunicator.Hello=1
IceBox.UseSharedCommunicator.Printer=1
IceBox.InheritProperties=1
IceBox.LoadOrder=Hello,Printer
Ice.Trace.Network=1

File: hello.cfg
Ice.Trace.Network=2

File: printer.cfg
Ice.Trace.Network=3

The two services and use the shared communicator, and all services inherit the server's properties. As IceBox prepares the shared Hello Printer
property set, the initial value of is as defined in the (inherited) server's configuration. The property Ice.Trace.Network 1 IceBox.LoadOrder
specifies that the service should be loaded first, therefore the property momentarily has the value but ultimately has Hello Ice.Trace.Network 2
the value after the properties for the service are merged.3 Printer

If we change the value of so that IceBox loads first, the value for in the shared communicator IceBox.LoadOrder Printer Ice.Trace.Network
will be instead because the setting in overrides all previous values.2 hello.cfg

Inheriting Properties from the IceBox Server
By default, a service does not inherit the IceBox server's configuration properties. For example, consider the following server configuration:

IceBox.Service.Weather=... --Ice.Config=svc.cfg
Ice.Trace.Network=1

The service only receives the properties that are defined in its property. In the example above, the service's Weather IceBox.Service
communicator is initialized with the properties from the file .svc.cfg

If services need to inherit the IceBox server's configuration properties, define the property in the IceBox server's IceBox.InheritProperties
configuration:

IceBox.Service.Weather=... --Ice.Config=svc.cfg
Ice.Trace.Network=1
IceBox.InheritProperties=1

All services inherit the server's properties when is set to a non-zero value.IceBox.InheritProperties

Logging Considerations for IceBox Services
In Ice 3.4 and earlier, the IceBox server configures a variation of its own logger in the communicator that it creates for each service (the only
difference being a service-specific logging prefix), therefore the logging scheme you configure for the IceBox server must be appropriate for all of its
services. The only way a service can configure a different logger is by using a .logger plug-in

As of Ice 3.5, the IceBox server only configures a logger for a service if that service has not already specified its own logger via the or Ice.LogFile Ice.
 properties.UseSyslog

See Also

IceBox Properties
Developing IceBox Services

The properties of the are also affected by this setting.shared communicator

https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.Service.name
https://doc.zeroc.com/display/Ice35/IceBox+Properties#IceBoxProperties-IceBox.InheritProperties
https://doc.zeroc.com/display/Ice35/Logger+Plug-ins
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.LogFile
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.UseSyslog
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.UseSyslog
https://doc.zeroc.com/display/Ice35/IceBox+Properties
https://doc.zeroc.com/display/Ice35/Developing+IceBox+Services

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

IceStorm
Location Transparency
Ice Miscellaneous Properties

https://doc.zeroc.com/display/Ice35/IceStorm
https://doc.zeroc.com/display/Ice35/Location+Transparency
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties

	Configuring IceBox Services

