Ice 3.4.2 Documentation

Example of a File System Client in PHP

This page presents a very simple client to access a server that implements the file system we developed in Slice for a Simple File System. The PHP
code shown here hardly differs from the code you would write for an ordinary PHP program. This is one of the biggest advantages of using Ice:
accessing a remote object is as easy as accessing an ordinary, local PHP object. This allows you to put your effort where you should, namely, into
developing your application logic instead of having to struggle with arcane networking APIs.

We now have seen enough of the client-side PHP mapping to develop a complete client to access our remote file system. For reference, here is the
Slice definition once more:

Slice

nodul e Fil esystem {
interface Node {
i denpotent string nane();

}s

exception GenericError {
string reason;

I
sequence<string> Lines;

interface File extends Node {
i denpotent Lines read();
i dempotent void wite(Lines text) throws CenericError;

b
sequence<Node*> NodeSeq;

interface Directory extends Node {
i denpot ent NodeSeq list();
b
b

To exercise the file system, the client does a recursive listing of the file system, starting at the root directory. For each node in the file system, the
client shows the name of the node and whether that node is a file or directory. If the node is a file, the client retrieves the contents of the file and
prints them.

The body of the client code looks as follows:

PHP

<?php
require 'lce.php';
require 'Filesystem php';

/1 Recursively print the contents of directory "dir"
/! in tree fashion. For files, show the contents of
/'l each file. The "depth" paranmeter is the current
/1 nesting level (for indentation).

function listRecursive($dir, $depth = 0)

{
$indent = str_repeat("\t", ++$depth);

$contents = $dir->_list(); // list is a reserved word in PHP
foreach ($contents as $i) {

$dir = FilesystemDirectoryPrxHel per::checkedCast ($i);
$file = Filesystem Fil ePrxHel per::uncheckedCast ($i);

echo $indent . $i->name() . ($dir ? " (directory):" : " (file):") . "\n";
if ($dir) {

I'i st Recursive($dir, $depth);
} else {

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System

Ice 3.4.2 Documentation

$text = $file->read();
foreach ($text as $j)

echo $indent . "\t" . $j . "\n";
}
}
}
$ic = null;
try
{
/| Create a commruni cator
/1
$ic = lce_initialize();
/Il Create a proxy for the root directory
/1
$obj = $ic->stringToProxy("RootDir:default -p 10000");
/| Down-cast the proxy to a Directory proxy
/1
$rootDir = Filesystem DirectoryPrxHel per::checkedCast ($obj);
/'l Recursively list the contents of the root directory
/1
echo "Contents of root directory:\n";
i st Recursive($rootDir);
}
catch(lce_Local Exception $ex)
{
print_r($ex);
}
if($ic)
{
/1 Cean up
/1
try
{
$i c->destroy();
}
cat ch(Exception $ex)
{
print_r($ex);
}
}
?>

The program first defines the | i st Recur si ve function, which is a helper function to print the contents of the file system, and the main program
follows. Let us look at the main program first:

1.

2.

The client first creates a proxy to the root directory of the file system. For this example, we assume that the server runs on the local host and
listens using the default protocol (TCP/IP) at port 10000. The object identity of the root directory is known to be Root Di r .

The client down-casts the proxy to the Di r ect or y interface and passes that proxy to | i st Recur si ve, which prints the contents of the file
system.

Most of the work happens in | i st Recur si ve. The function is passed a proxy to a directory to list, and an indent level. (The indent level increments
with each recursive call and allows the code to print the name of each node at an indent level that corresponds to the depth of the tree at that node.) |
i st Recur si ve calls the | i st operation on the directory and iterates over the returned sequence of nodes:

1.

2.

3.

The code uses checkedCast to narrow the Node proxy to a Di r ect ory proxy, and uses uncheckedCast to narrow the Node proxy to a F
i | e proxy. Exactly one of those casts will succeed, so there is no need to call checkedCast twice: if the Node is-a Di r ect ory, the code
uses the proxy returned by checkedCast ; if checkedCast fails, we know that the Node is-a File and, therefore, uncheckedCast is
sufficient to get a Fi | e proxy.

In general, if you know that a down-cast to a specific type will succeed, it is preferable to use uncheckedCast instead of checkedCast
because uncheckedCast does not incur any network traffic.

The code prints the name of the file or directory and then, depending on which cast succeeded, prints " (directory)" or"(file)"
following the name.

The code checks the type of the node:

Copyright © 2017, ZeroC, Inc.

Ice 3.4.2 Documentation

® |fitis a directory, the code recurses, incrementing the indent level.
* Ifitis afile, the code calls the r ead operation on the file to retrieve the file contents and then iterates over the returned sequence
of lines, printing each line.

Assume that we have a small file system consisting of a two files and a a directory as follows:

f_) - Directory (’“\) RootDir
'

/N
. = File / \

Coleridge | . README

Kubla-Khan

A small file system.

The output produced by the client for this file system is:

Contents of root directory:
README (file):
This file systemcontains a collection of poetry.
Col eridge (directory):
Kubl a_Khan (file):
I'n Xanadu did Kubla Khan
A stately pl easure-donme decree:
Where Al ph, the sacred river, ran
Through caverns neasurel ess to man
Down to a sunl ess sea.

Note that, so far, our client is not very sophisticated:

® The protocol and address information are hard-wired into the code.
® The client makes more remote procedure calls than strictly necessary; with minor redesign of the Slice definitions, many of these calls can
be avoided.

We will see how to address these shortcomings in our discussions of IceGrid and object life cycle.

See Also

Hello World Application

Slice for a Simple File System
Object Life Cycle

IceGrid

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice34/IceGrid
https://doc.zeroc.com/display/Ice34/Object+Life+Cycle
https://doc.zeroc.com/display/Ice34/Hello+World+Application
https://doc.zeroc.com/display/Ice34/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/Ice34/Object+Life+Cycle
https://doc.zeroc.com/display/Ice34/IceGrid

	Example of a File System Client in PHP

