
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.

2.
3.
4.

Python Mapping for Classes
On this page:

Basic Python Mapping for Classes
Inheritance from Ice.Object in Python
Class Data Members in Python
Class Constructors in Python
Class Operations in Python
Class Factories in Python

Basic Python Mapping for Classes
A Slice maps to a Python class with the same name. The generated class contains an attribute for each Slice data member (just as for class
structures and exceptions). Consider the following class definition:

Slice

class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
};

The Python mapping generates the following code for this definition:

Python

class TimeOfDay(Ice.Object):
 def __init__(self, hour=0, minute=0, second=0):
 # ...
 self.hour = hour
 self.minute = minute
 self.second = second

 def ice_staticId():
 return '::M::TimeOfDay'
 ice_staticId = staticmethod(ice_staticId)

 # ...

 #
 # Operation signatures.
 #
 # def format(self, current=None):

There are a number of things to note about the generated code:

The generated class inherits from . This means that all classes implicitly inherit from , which is the TimeOfDay Ice.Object Ice.Object
ultimate ancestor of all classes. Note that is the same as . In other words, you pass a class where Ice.Object not Ice.ObjectPrx cannot
a proxy is expected and vice versa.
The constructor defines an attribute for each Slice data member.
The class defines the static method .ice_staticId
A comment summarizes the method signatures for each Slice operation.

There is quite a bit to discuss here, so we will look at each item in turn.

Inheritance from in PythonIce.Object

https://doc.zeroc.com/display/Ice35/Classes

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Like interfaces, classes implicitly inherit from a common base class, . However, as shown in the illustration below, classes inherit from Ice.Object I
 instead of (which is at the base of the inheritance hierarchy for proxies). As a result, you cannot pass a class where a ce.Object Ice.ObjectPrx

proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

Inheritance from and .Ice.ObjectPrx Ice.Object

Ice.Object contains a number of methods:

Python

class Object(object):
 def ice_isA(self, id, current=None):
 # ...

 def ice_ping(self, current=None):
 # ...

 def ice_ids(self, current=None):
 # ...

 def ice_id(self, current=None):
 # ...

 def ice_staticId():
 # ...
 ice_staticId = staticmethod(ice_staticId)

 def ice_preMarshal(self):
 # ...

 def ice_postUnmarshal(self):
 # ...

The member functions of behave as follows:Ice.Object

ice_isA
This method returns if the object supports the given , and otherwise.true type ID false

ice_ping
As for interfaces, provides a basic reachability test for the object.ice_ping

ice_ids
This method returns a string sequence representing all of the supported by this object, including .type IDs ::Ice::Object

ice_id
This method returns the actual run-time of the object. If you call through a reference to a base instance, the returned type ID type ID ice_id
is the actual (possibly more derived) type ID of the instance.

ice_staticId
This method is generated in each class and returns the static of the class.type ID

ice_preMarshal
The Ice run time invokes this method prior to marshaling the object's state, providing the opportunity for a subclass to validate its declared
data members.

https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Type+IDs

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

ice_postUnmarshal
The Ice run time invokes this method after unmarshaling an object's state. A subclass typically overrides this function when it needs to
perform additional initialization using the values of its declared data members.

Note that neither nor the generated class override and , so the default implementations apply.Ice.Object __hash__ __eq__

Class Data Members in Python
By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the
generated class contains a corresponding attribute.

Optional data members use the same mapping as required data members, but an optional data member can also be set to the marker value Ice.
 to indicate that the member is unset. A well-behaved program must compare an optional data member to before using the Unset Ice.Unset

member's value:

Python

v = ...
if v.optionalMember is Ice.Unset:
 print("optionalMember is unset")
else:
 print("optionalMember = " + str(v.optionalMember))

Although Python provides no standard mechanism for restricting access to an object's attributes, by convention an attribute whose name begins with
an underscore signals the author's intent that the attribute should only be accessed by the class itself or by one of its subclasses. You can employ
this convention in your Slice classes using the metadata directive. The presence of this directive causes the Slice compiler to prepend protected
an underscore to the mapped name of the data member. For example, the class shown below has the metadata directive TimeOfDay protected
applied to each of its data members:

Slice

class TimeOfDay {
 ["protected"] short hour; // 0 - 23
 ["protected"] short minute; // 0 - 59
 ["protected"] short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

Python

class TimeOfDay(Ice.Object):
 def __init__(self, hour=0, minute=0, second=0):
 # ...
 self._hour = hour
 self._minute = minute
 self._second = second

 # ...

 #
 # Operation signatures.
 #
 # def format(self, current=None):

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member
individually. For example, we can rewrite the class as follows:TimeOfDay

https://doc.zeroc.com/display/Ice35/Optional+Data+Members

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Slice

["protected"] class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
};

Class Constructors in Python
Classes have a constructor that assigns to each data member a default value appropriate for its type. You can also declare different for default values
data members of primitive and enumerated types.

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived
class's data members, in base-to-derived order.

You can invoke this constructor in one of two ways:

Provide values for all members, including , in the order of declaration:optional members

Python

t = TimeOfDay(12, 33, 45)
t2 = TimeOfDay(14, 7) # second defaults to 0

Pass as the value of any optional member you want to be unset.Ice.Unset

Used named arguments to specify values for certain members and in any order:

Python

t = TimeOfDay(minute=33, hour=12)

Class Operations in Python
Operations of classes are mapped to methods in the generated class. This means that, if a class contains operations (such as the operation format
of our class), you must provide an implementation of the operation in a class that is derived from the generated class. For example:TimeOfDay

Python

class TimeOfDayI(TimeOfDay):
 def __init__(self, hour=0, minute=0, second=0):
 TimeOfDay.__init__(self, hour, minute, second)

 def format(self, current=None):
 return "%02d:%02d:%02d" % (self.hour, self.minute, self.second)

A Slice class such as that declares or inherits an operation is inherently abstract. Python does not support the notion of abstract classes TimeOfDay
or abstract methods, therefore the mapping merely summarizes the required method signatures in a comment for your convenience. Furthermore, the
mapping generates code in the constructor of an abstract class to prevent it from being instantiated directly; any attempt to do so raises a RuntimeEr

 exception.ror

You may notice that the mapping for an operation adds an optional trailing parameter named . For now, you can ignore this parameter and current
pretend it does not exist.

https://doc.zeroc.com/display/Ice35/Simple+Classes
https://doc.zeroc.com/display/Ice35/Optional+Data+Members
https://doc.zeroc.com/display/Ice35/The+Current+Object

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

Class Factories in Python
Having created a class such as , we have an implementation and we can instantiate the class, but we cannot receive it as TimeOfDayI TimeOfDayI
the return value or as an out-parameter from an operation invocation. To see why, consider the following simple interface:

Slice

interface Time {
 TimeOfDay get();
};

When a client invokes the operation, the Ice run time must instantiate and return an instance of the class. However, is get TimeOfDay TimeOfDay
an abstract class that cannot be instantiated. Unless we tell it, the Ice run time cannot magically know that we have created a class that TimeOfDayI
implements the abstract operation of the abstract class. In other words, we must provide the Ice run time with a factory that format TimeOfDay
knows that the abstract class has a concrete implementation. The interface provides us with the TimeOfDay TimeOfDayI Ice::Communicator
necessary operations:

Slice

module Ice {
 local interface ObjectFactory {
 Object create(string type);
 void destroy();
 };

 local interface Communicator {
 void addObjectFactory(ObjectFactory factory, string id);
 ObjectFactory findObjectFactory(string id);
 // ...
 };
};

To supply the Ice run time with a factory for our class, we must implement the interface:TimeOfDayI ObjectFactory

Python

class ObjectFactory(Ice.ObjectFactory):
 def create(self, type):
 if type == M.TimeOfDay.ice_staticId():
 return TimeOfDayI()
 assert(False)
 return None

 def destroy(self):
 # Nothing to do
 pass

The object factory's method is called by the Ice run time when it needs to instantiate a class. The factory's method is create TimeOfDay destroy
called by the Ice run time when its communicator is destroyed.

The method is passed the of the class to instantiate. For our class, the type ID is . Our create type ID TimeOfDay "::M::TimeOfDay"
implementation of checks the type ID: if it matches, the method instantiates and returns a object. For other type IDs, the create TimeOfDayI
method asserts because it does not know how to instantiate other types of objects.

Note that we used the method to obtain the type ID rather than embedding a literal string. Using a literal type ID string in your code ice_staticId
is discouraged because it can lead to errors that are only detected at run time. For example, if a Slice class or one of its enclosing modules is
renamed and the literal string is not changed accordingly, a receiver will fail to unmarshal the object and the Ice run time will raise NoObjectFactor

. By using instead, we avoid any risk of a misspelled or obsolete type ID, and we can discover earlier whether a Slice yException ice_staticId
class or module has been renamed.

Given a factory implementation, such as our , we must inform the Ice run time of the existence of the factory:ObjectFactory

https://doc.zeroc.com/display/Ice35/Type+IDs

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Python

ic = ... # Get Communicator...
ic.addObjectFactory(ObjectFactory(), M.TimeOfDay.ice_staticId())

Now, whenever the Ice run time needs to instantiate a class with the type ID , it calls the method of the registered "::M::TimeOfDay" create Obje
 instance.ctFactory

The operation of the object factory is invoked by the Ice run time when the communicator is destroyed. This gives you a chance to clean up destroy
any resources that may be used by your factory. Do not call on the factory while it is registered with the communicator — if you do, the Ice destroy
run time has no idea that this has happened and, depending on what your implementation is doing, may cause undefined behavior when destroy
the Ice run time tries to next use the factory.

The run time guarantees that will be the last call made on the factory, that is, will not be called concurrently with , and destroy create destroy cre
 will not be called once has been called. However, calls to can be made concurrently.ate destroy create

Note that you cannot register a factory for the same type ID twice: if you call with a type ID for which a factory is registered, the addObjectFactory
Ice run time throws an .AlreadyRegisteredException

Finally, keep in mind that if a class has only data members, but no operations, you need not create and register an object factory to transmit
instances of such a class. Only if a class has operations do you have to define and register an object factory.

See Also

Classes
Type IDs
Optional Data Members
Python Mapping for Operations
The Current Object

https://doc.zeroc.com/display/Ice35/Classes
https://doc.zeroc.com/display/Ice35/Type+IDs
https://doc.zeroc.com/display/Ice35/Optional+Data+Members
https://doc.zeroc.com/display/Ice35/Python+Mapping+for+Operations
https://doc.zeroc.com/display/Ice35/The+Current+Object

	Python Mapping for Classes

