
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

The Process Facet
An activation service, such as an node, needs a reliable way to gracefully deactivate a server. One approach is to use a platform-specific IceGrid
mechanism, such as POSIX signals. This works well on POSIX platforms when the server is prepared to and react appropriately. On intercept signals
Windows platforms, it works less reliably for C++ servers, and not at all for Java servers. For these reasons, the facet provides an Process
alternative that is both portable and reliable.

On this page:

The Process Interface
Application Requirements for the Process Facet
Replacing the Process Facet
Integrating the Process Facet with an Activation Service

The InterfaceProcess
The Slice interface allows an activation service to request a graceful shutdown of the program:Ice::Process

Slice

module Ice {
interface Process {
 void shutdown();
 void writeMessage(string message, int fd);
};
};

When is invoked, the object implementing this interface is expected to initiate the termination of its process. The activation service may shutdown
expect the program to terminate within a certain period of time, after which it may terminate the program abruptly.

The operation allows remote clients to print a message to the program's standard output (== 1) or standard error (== 2) writeMessage fd fd
channels.

Application Requirements for the Process Facet
The default implementation of the facet requires cooperation from an application in order to successfully terminate a process. Specifically, Process
the facet invokes on its and assumes that the application uses this event as a signal to commence its termination shutdown communicator
procedure. For example, an application typically uses a thread (often the main thread) to call the communicator operation , which waitForShutdown
blocks the calling thread until the communicator is shut down or destroyed. After returns, the calling thread can initiate a graceful waitForShutdown
shutdown of its process.

Replacing the Process Facet
You can replace the default facet if your application requires a different scheme for gracefully shutting itself down. To define your own Process
facet, create a servant that implements the interface. As an example, the servant definition shown below duplicates the functionality Ice::Process
of the default facet:Process

Be aware of the associated with enabling the facet.security considerations Process

https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/pages/viewpage.action?pageId=14680295
https://doc.zeroc.com/display/Ice35/Communicators#Communicators-ops
https://doc.zeroc.com/display/Ice35/Security+Considerations+for+Administrative+Facets

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

class ProcessI : public Ice::Process {
public:
 ProcessI(const Ice::CommunicatorPtr& communicator) : _communicator(communicator)
 {}

 void shutdown(const Ice::Current&)
 {
 _communicator->shutdown();
 }

 void writeMessage(const string& msg, Ice::Int fd, const Ice::Current&)
 {
 if(fd == 1) cout << msg << endl;
 else if(fd == 2) cerr << msg << endl;
 }

private:
 const Ice::CommunicatorPtr _communicator;
};

As you can see, the default implementation of simply shuts down the communicator, which initiates an orderly termination of the Ice run shutdown
time's server-side components and prevents object adapters from dispatching any new requests. You can add your own application-specific behavior
to the method to ensure that your program terminates in a timely manner.shutdown

To avoid the risk of a race condition, the recommended strategy for replacing the facet is to delay creation of the administrative facets so Process
that your application has a chance to replace the facet:

Ice.Admin.DelayCreation=1

With enabled, the application can safely remove the default facet and install its own:Ice.Admin.DelayCreation Process

C++

Ice::CommunicatorPtr communicator = ...
communicator->removeAdminFacet("Process");
Ice::ProcessPtr myProcessFacet = new MyProcessFacet(...);
communicator->addAdminFacet(myProcessFacet, "Process");

The final step is to activate the administrative facility by calling on the communicator:getAdmin

C++

communicator->getAdmin();

Integrating the Process Facet with an Activation Service
If the and properties are defined, the Ice run time performs the following steps after creating the Ice.Admin.ServerId Ice.Default.Locator Ic

: object adaptere.Admin

Obtains proxies for the facet and the default locatorProcess
Invokes on the proxy to obtain a proxy for the locator registrygetRegistry

A servant on its communicator while executing a dispatched operation.must not invoke destroy

https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.DelayCreation
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.ServerId
https://doc.zeroc.com/display/Ice35/Ice+Default+and+Override+Properties#IceDefaultandOverrideProperties-Ice.Default.Locator
https://doc.zeroc.com/display/Ice35/The+Administrative+Object+Adapter
https://doc.zeroc.com/display/Ice35/The+Administrative+Object+Adapter
https://doc.zeroc.com/display/Ice35/Communicators#Communicators-ops

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Invokes on the locator registry and supplies the value of along with a proxy for the setServerProcessProxy Ice.Admin.ServerId Pro
 facetcess

The identifier specified by must uniquely identify the process within the locator registry.Ice.Admin.ServerId

In the case of , the node defines the and properties for each deployed server. The node IceGrid Ice.Admin.ServerId Ice.Default.Locator
also supplies a value for if the property is not defined by the server.Ice.Admin.Endpoints

See Also

Communicators
Facets and Versioning
Portable Signal Handling in C++
Security Considerations for Administrative Facets
Object Adapters
The Administrative Object Adapter
Ice Administrative Properties
IceGrid

https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties#IceAdministrativeProperties-Ice.Admin.AdapterProperty
https://doc.zeroc.com/display/Ice35/Communicators
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/pages/viewpage.action?pageId=14680295
https://doc.zeroc.com/display/Ice35/Security+Considerations+for+Administrative+Facets
https://doc.zeroc.com/display/Ice35/Object+Adapters
https://doc.zeroc.com/display/Ice35/The+Administrative+Object+Adapter
https://doc.zeroc.com/display/Ice35/Ice+Administrative+Properties
https://doc.zeroc.com/display/Ice35/IceGrid

	The Process Facet

