
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Default Servants
On this page:

Overview of Default Servants
Default Servant API
Threading Guarantees for Default Servants
Call Dispatch Semantics for Default Servants
Guidelines for Implementing Default Servants

Object Identity is the Key
Minimize Contention
Combine Strategies
Categories Denote Interfaces
Plan for the Future
Throw exceptions
Handle ice_ping
Consider Interceptors
Use a Blobject Default Servant to Forward Messages

Overview of Default Servants
The (ASM) is a simple lookup table that maintains a one-to-one mapping between object identities and servants. Although the Active Servant Map
ASM is easy to understand and offers efficient indexing, it does not scale well when the number of objects is very large. Scalability is a common
problem with object-oriented middleware: servers frequently are used as front ends to large databases that are accessed remotely by clients. The
server's job is to present an object-oriented view to clients of a very large number of records in the database. Typically, the number of records is far
too large to instantiate servants for even a fraction of the database records.

A common technique for solving this problem is to use . A default servant is a servant that, for each request, takes on the persona of default servants
a different Ice object. In other words, the servant changes its behavior according to the that is accessed by a request, on a per-request object identity
basis. In this way, it is possible to allow clients access to an unlimited number of Ice objects with only a single servant in memory. A default servant is
essentially a specialized version of a that satisfies the majority of use cases with a simpler API, whereas a servant locator provides servant locator
more flexibility for those applications that require it.

Default servant implementations are attractive not only because of the memory savings they offer, but also because of the simplicity of
implementation: in essence, a default servant is a facade to the persistent state of an object in the database. This means that the programming [1]
required to implement a default servant is typically minimal: it simply consists of the code required to read and write the corresponding database
records.

A default servant is a regular servant that you implement and register with an . For each incoming request, the object adapter first object adapter
attempts to locate a servant in its ASM. If no servant is found, the object adapter dispatches the request to a default servant. With this design, a
default servant is the object adapter's servant of last resort if no match was found in the ASM.

Implementing a default servant requires a somewhat different mindset than the typical "one servant per Ice object" strategy used in less advanced
applications. The most important quality of a default servant is its statelessness: it must be prepared to dispatch multiple requests simultaneously for
different objects. The price we have to pay for the unlimited scalability and reduced memory footprint is performance: default servants typically make
a database access for every invoked operation, which is obviously slower than caching state in memory as part of a servant that has been added to
the ASM. However, this does not mean that default servants carry an unacceptable performance penalty: databases often provide sophisticated
caching, so even though the operation implementations read and write the database, as long as they access cached state, performance may be
entirely acceptable.

Default Servant API
The default servant API consists of the following operations in the object adapter interface:

Slice

module Ice {
 local interface ObjectAdapter {
 void addDefaultServant(Object servant, string category);
 Object removeDefaultServant(string category);
 Object findDefaultServant(string category);

 // ...
 };
};

https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Object+Adapters

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

1.
2.

3.

4.

5.

6.

As you can see, the object adapter allows you to add, remove, and find default servants. Note that, when you register a default servant, you must
provide an argument for the parameter. The value of the parameter controls which object identities the default servant is category category
responsible for: only object identities with a matching member trigger a dispatch to this default servant. An incoming request for which no category
explicit entry exists in the ASM and with a category for which no default servant is registered returns an to the client.ObjectNotExistException

addDefaultServant has the following semantics:

You can register exactly one default servant for a specific category. Attempts to call for the same category more than addDefaultServant
once raise an .AlreadyRegisteredException
You can register different default servants for different categories, or you can register the same single default servant multiple times (each
time for a different category). In the former case, the category is implicit in the default servant instance that is called by the Ice run time; in
the latter case, the servant can find out which category the incoming request is for by examining the object identity member of the Current
object that is passed to the dispatched operation.
It is legal to register a default servant for the empty category. Such a servant is used if a request comes in for which no entry exists in the
ASM, and whose category does not match the category of any other registered default servant.

removeDefaultServant removes the default servant for the specified category. Attempts to remove a non-existent default servant raise NotRegis
. The operation returns the removed default servant. Once a default servant is successfully removed for the specified category, the teredException

Ice run time guarantees that no new incoming requests for that category are dispatched to the servant.

The operation allows you to retrieve the default servant for a specific category (including the empty category). If no default findDefaultServant
servant is registered for the specified category, returns null.findDefaultServant

Threading Guarantees for Default Servants
The threading semantics for a default servant are no different than for a servant registered in the ASM: operations may be dispatched on a default
servant concurrently, for the same object identity or for different object identities. If you have configured the communicator with multiple dispatch

, your default servant must protect access to shared data with appropriate locks.threads

Call Dispatch Semantics for Default Servants
This section summarizes the actions taken by the Ice run time to locate a servant for an incoming request.

Every incoming request implicitly identifies a specific object adapter for the request (because the request arrives at a specific and, transport endpoint
therefore, identifies a particular object adapter). The incoming request carries an object identity that must be mapped to a servant. To locate a
servant, the Ice run time goes through the following steps, in the order shown:

Look for the identity in the ASM. If the ASM contains an entry, dispatch the request to the corresponding servant.
If the category of the incoming object identity is non-empty, look for a default servant that is registered for that category. If such a default
servant is registered, dispatch the request to that servant.
If the category of the incoming object identity is empty, or no default servant could be found for the category in step 2, look for a default
servant that is registered for the empty category. If such a default servant is registered, dispatch the request to that servant.
If the category of the incoming object identity is non-empty and no servant could be found in the preceding steps, look for a servant locator
that is registered for that category. If such a servant locator is registered, call on the servant locator and, if returns a locate locate
servant, dispatch the request to that servant, followed by a call to ; otherwise, if the call to returns null, raise finished locate ObjectNotE

 or in the client. (is raised if the ASM does not contain a xistException FacetNotExistException ObjectNotExistException
servant with the given identity at all, is raised if the ASM contains a servant with a matching identity, but a non-FacetNotExistException
matching .)facet
If the category of the incoming object identity is empty, or no servant locator could be found for the category in step 4, look for a default
servant locator (that is, a servant locator that is registered for the empty category). If a default servant locator is registered, dispatch the
request as for step 4.
Raise or in the client. (is raised if the ASM ObjectNotExistException FacetNotExistException ObjectNotExistException
does not contain a servant with the given identity at all, is raised if the ASM contains a servant with a FacetNotExistException
matching identity, but a non-matching .)facet

It is important to keep these call dispatch semantics in mind because they enable a number of powerful implementation techniques. Each technique
allows you to streamline your server implementation and to precisely control the trade-off between performance, memory consumption, and
scalability.

Guidelines for Implementing Default Servants
This section provides some guidelines to assist you in implementing default servants effectively.

Object Identity is the Key

https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Object+Adapter+Endpoints
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

When an incoming request is dispatched to the default servant, the target object identity is provided in the argument. The field of the Current name
identity typically supplies everything the default servant requires in order to satisfy the request. For instance, it may serve as the key in a database
query, or even hold an encoded structure in some proprietary format that your application uses to convey more than just a string.

Naturally, the client can also pass arguments to the operation that assist the default servant in retrieving whatever state it requires. However, this
approach can easily introduce implementation artifacts into your Slice interfaces, and in most cases the client should not need to know that the server
is implemented with a default servant. If at all possible, use only the object identity.

Minimize Contention

For better scalability, the default servant's implementation should strive to eliminate contention among the dispatch threads. As an example, when a
database holds the default servant's state, each of the servant's operations usually begins with a query. Assuming that the database API is thread-
safe, the servant needs to perform no explicit locking of its own. With a copy of the state in hand, the implementation can work with function-local
data to satisfy the request.

Combine Strategies

The ASM still plays a useful role even in applications that are ideally suited for default servants. For example, there is no need to implement a
singleton object as a default servant: if there can only be one instance of the object, implementing it as a default servant does nothing to improve
your application's scalability.

Applications often install a handful of servants in the ASM while servicing the majority of requests in a default servant. For example, a database
application might install a singleton query object in the ASM while using a default servant to process all invocations on the database records.

Categories Denote Interfaces

In general, all of the objects serviced by a default servant must have the same interface. If you only need a default servant for one interface, you can
register the default servant with an empty category string. However, to implement several interfaces, you will need a default servant implementation
for each one. Furthermore, you must take steps to ensure that the object adapter dispatches an incoming request to the appropriate default servant.
The field of the object identity is intended to serve this purpose.category

For example, a process control system might have interfaces named and . To direct requests to the proper default servant, the Sensor Switch
application uses the symbol or as the category of each object's identity, and registers corresponding default servants having those Sensor Switch
same categories with the object adapter.

Plan for the Future

If you suspect that you might eventually need to implement more than one interface with default servants, we recommend using a non-empty
category even if you start out having only one default servant. Adding another default servant later becomes much easier if the application is already
designed to operate correctly with categories.

Throw exceptions

If a request arrives for an object that no longer exists, it is the default servant's responsibility to raise to properly ObjectNotExistException
manage .object life cycles

Handle ice_ping

One issue you need to be aware of with default servants is the need to override : the default implementation of that the servant ice_ping ice_ping
inherits from its skeleton class always succeeds. For servants that are registered with the ASM, this is exactly what we want; however, for default
servants, must fail if a client uses a proxy to an Ice object that . To avoid getting successful invocations for non-ice_ping no longer exists ice_ping
existent Ice objects, you must override in the default servant. The implementation must check whether the object identity for the request ice_ping
denotes a still-existing Ice object and, if not, raise .ObjectNotExistException

It is good practice to override if you are using default servants. Because you cannot override operations on using a Java or ice_ping Ice::Object
C# tie servant (or an Objective-C delegate servant), you must implement default servants by deriving from the generated skeleton class if you choose
to override .ice_ping

Consider Interceptors

A is often installed as a default servant.dispatch interceptor

Use a Default Servant to Forward MessagesBlobject

https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/Operations+on+Object#OperationsonObject-ice_ping
https://doc.zeroc.com/display/Ice35/Object+Life+Cycle
https://doc.zeroc.com/display/Ice35/Dispatch+Interceptors

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

1.

Message forwarding services, such as , can be implemented simply and efficiently with a default servant. Such a servant simply Glacier2 Blobject
chooses a destination to forward a request to, without decoding any of the parameters.

See Also

The Active Servant Map
Object Identity
Servant Locators
Object Adapters
The Current Object
The Ice Threading Model
Facets and Versioning
Dispatch Interceptors
Dynamic Invocation and Dispatch Overview
Glacier2

References

Gamma, E., et al. 1994. . Reading, MA: Addison-Wesley.Design Patterns

https://doc.zeroc.com/display/Ice35/Glacier2
https://doc.zeroc.com/display/Ice35/Dynamic+Invocation+and+Dispatch+Overview#DynamicInvocationandDispatchOverview-blobject
https://doc.zeroc.com/display/Ice35/The+Active+Servant+Map
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Servant+Locators
https://doc.zeroc.com/display/Ice35/Object+Adapters
https://doc.zeroc.com/display/Ice35/The+Current+Object
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Facets+and+Versioning
https://doc.zeroc.com/display/Ice35/Dispatch+Interceptors
https://doc.zeroc.com/display/Ice35/Dynamic+Invocation+and+Dispatch+Overview
https://doc.zeroc.com/display/Ice35/Glacier2
http://amzn.com/0201633612

	Default Servants

