
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Communicators
The main entry point to the Ice run time is represented by the local interface . An instance of is Ice::Communicator Ice::Communicator
associated with a number of run-time resources:

Client-side thread pool
The client-side is used to process replies to asynchronous method invocations (AMI), to avoid deadlocks in callbacks, and to thread pool
process incoming requests on .bidirectional connections

Server-side thread pool
Threads in this accept incoming connections and handle requests from clients.pool

Configuration properties
Various aspects of the Ice run time can be configured via properties. Each communicator has its own set of such .configuration properties

Object factories
In order to instantiate that are derived from a known base type, the communicator maintains a set of object factories that can classes
instantiate the class on behalf of the Ice run time. Object factories are discussed in each client-side language mapping.

Logger object
A object implements the interface and determines how log messages that are produced by the Ice run time are logger Ice::Logger
handled.

Default router
A router implements the interface. Routers are used by to implement the firewall functionality of Ice.Ice::Router Glacier2

Default locator
A is an object that resolves an object identity to a proxy. Locator objects are used to build location services, such as .locator IceGrid

Plug-in manager
 are objects that add features to a communicator. For example, is implemented as a plug-in. Each communicator has a plug-Plug-ins IceSSL

in manager that implements the interface and provides access to the set of plug-ins for a communicator.Ice::PluginManager

Object adapters
 dispatch incoming requests and take care of passing each request to the correct servant.Object adapters

Object adapters and objects that use different communicators are completely independent from each other. Specifically:

Each communicator uses its own thread pool. This means that if, for example, one communicator runs out of threads for incoming requests,
only objects using that communicator are affected. Objects using other communicators have their own thread pool and are therefore
unaffected.
Collocated invocations across different communicators are not optimized, whereas collocated invocations using the same communicator
bypass much of the overhead of call dispatch.

Typically, servers use only a single communicator but, occasionally, multiple communicators can be useful. For example, , uses a separate IceBox
communicator for each Ice service it loads to ensure that different services cannot interfere with each other. Multiple communicators are also useful
to avoid thread starvation: if one service runs out of threads, this leaves the remaining services unaffected.

The communicator's interface is defined in Slice. Part of this interface looks as follows:

https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Classes
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/display/Ice35/Glacier2
https://doc.zeroc.com/display/Ice35/Locators
https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/display/Ice35/Plug-in+Facility
https://doc.zeroc.com/display/Ice35/IceSSL
https://doc.zeroc.com/display/Ice35/Object+Adapters
https://doc.zeroc.com/display/Ice35/IceBox

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Slice

module Ice {
 local interface Communicator {
 string proxyToString(Object* obj);
 Object* stringToProxy(string str);
 PropertyDict proxyToProperty(Object* proxy, string property);
 Object* propertyToProxy(string property);
 Identity stringToIdentity(string str);
 string identityToString(Identity id);
 ObjectAdapter createObjectAdapter(string name);
 ObjectAdapter createObjectAdapterWithEndpoints(string name, string endpoints);
 ObjectAdapter createObjectAdapterWithRouter(string name, Router* rtr);
 void shutdown();
 void waitForShutdown();
 bool isShutdown();
 void destroy();
 // ...
 };
 // ...
};

The communicator offers a number of operations:

proxyToString
 stringToProxy

These operations allow you to convert a proxy into its stringified representation and vice versa. Instead of calling on the proxyToString
communicator, you can also use the to stringify it. However, you can only stringify non-null proxies that way ice_toString proxy method
— to stringify a null proxy, you must use . (The stringified representation of a null proxy is the empty string.)proxyToString

proxyToProperty
 propertyToProxy

 returns the set of for the supplied proxy. The parameter specifies the base name for the proxyToProperty proxy properties property
properties in the returned set. the configuration property with the given name and converts its value into a propertyToProxy retrieves
proxy. A null proxy is returned if no property is found with the specified name.

identityToString
 stringToIdentity

These operations allow you to convert an to a string and vice versa.identity

createObjectAdapter
createObjectAdapterWithEndpoints

 createObjectAdapterWithRouter

These operations create a new . Each object adapter is associated with zero or more . Typically, an object object adapter transport endpoints
adapter has a single transport endpoint. However, an object adapter can also offer multiple endpoints. If so, these endpoints each lead to
the same set of objects and represent alternative means of accessing these objects. This is useful, for example, if a server is behind a
firewall but must offer access to its objects to both internal and external clients; by binding the adapter to both the internal and external
interfaces, the objects implemented in the server can be accessed via either interface.

An object adapter also can have no endpoint at all. In that case, the adapter can only be reached via collocated invocations originating from
the same communicator as is used by the adapter.

Whereas determines its transport endpoints from configuration information, createObjectAdapter createObjectAdapterWithEndpo
 allows you to supply the transport endpoints for the new adapter. Typically, you should use in preference to ints createObjectAdapter

. Doing so keeps transport-specific information, such as host names and port numbers, out of the createObjectAdapterWithEndpoints
source code and allows you to reconfigure the application by changing a property (and so avoid recompilation when a transport endpoint
needs to be changed).

 creates a routed object adapter that allows clients to receive callbacks from servers that are behind createObjectAdapterWithRouter
a . router

The newly-created adapter uses its name as a prefix for a collection of that tailor the adapter's behavior. By default, configuration properties
the adapter prints a warning if other properties are defined having the same prefix, but you can disable this warning using the property Ice.

.Warn.UnknownProperties

https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/Obtaining+Proxies
https://doc.zeroc.com/display/Ice35/Obtaining+Proxies
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Object+Adapters
https://doc.zeroc.com/display/Ice35/Object+Adapter+Endpoints
https://doc.zeroc.com/display/Ice35/Glacier2
https://doc.zeroc.com/display/Ice35/Ice+Object+Adapter+Properties
https://doc.zeroc.com/display/Ice35/Ice+Warning+Properties#IceWarningProperties-Ice.Warn.UnknownProperties
https://doc.zeroc.com/display/Ice35/Ice+Warning+Properties#IceWarningProperties-Ice.Warn.UnknownProperties

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

shutdown

This operation shuts down the server side of the Ice run time:
Operation invocations that are in progress at the time is called are allowed to complete normally. does shutdown shutdown not
wait for these operations to complete; when returns, you know that no new incoming requests will be dispatched, but shutdown
operations that were already in progress at the time you called may still be running. You can wait for still-executing shutdown
operations to complete by calling .waitForShutdown
Operation invocations that arrive after the server has called either fail with a or are shutdown ConnectFailedException
transparently redirected to a new instance of the server (via).IceGrid
Note that initiates deactivation of all object adapters associated with the communicator, so attempts to use an adapter shutdown
once has completed raise an .shutdown ObjectAdapterDeactivatedException

waitForShutdown

On the server side, this operation suspends the calling thread until the communicator has shut down (that is, until no more operations are
executing in the server). This allows you to wait until the server is idle before you destroy the communicator.

On the client side, simply waits until another thread has called or .waitForShutdown shutdown destroy

isShutdown

This operation returns true if has been invoked on the communicator. A return value of true does not necessarily indicate that the shutdown
shutdown process has completed, only that it has been initiated. An application that needs to know whether shutdown is complete can call w

. If the blocking nature of is undesirable, the application can invoke it from a separate thread.aitForShutdown waitForShutdown

destroy

This operation destroys the communicator and all its associated resources, such as threads, communication endpoints, object adapters, and
memory resources. Once you have destroyed the communicator (and therefore destroyed the run time for that communicator), you must not
call any other Ice operation (other than to create another communicator).

It is imperative that you call before you leave the function of your program. Failure to do so results in undefined behavior. destroy main

Calling before leaving is necessary because waits for all running threads to terminate before it returns. If you destroy main destroy
leave without calling , you will leave with other threads still running; many threading packages do not allow you to do main destroy main
this and end up crashing your program.

If you call without calling , the call waits for all executing operation invocations to complete before it returns (that is, the destroy shutdown
implementation of implicitly calls followed by). (and, therefore,) deactivates destroy shutdown waitForShutdown shutdown destroy
all object adapters that are associated with the communicator. Since blocks until all operation invocations complete, a servant will destroy
deadlock if it invokes on its own communicator while executing a dispatched operation. destroy

On the client side, calling while operations are still executing causes those operations to terminate with a destroy CommunicatorDestroy
.edException

See Also

Properties and Configuration
Object Adapters
Object Adapter Endpoints
Object Identity
Obtaining Proxies
Proxy Methods
Logger Facility
The Ice Threading Model
Bidirectional Connections
IceGrid
IceSSL
Glacier2
IceBox

https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Object+Adapters
https://doc.zeroc.com/display/Ice35/Object+Adapter+Endpoints
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Obtaining+Proxies
https://doc.zeroc.com/display/Ice35/Proxy+Methods
https://doc.zeroc.com/display/Ice35/Logger+Facility
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Bidirectional+Connections
https://doc.zeroc.com/display/Ice35/IceGrid
https://doc.zeroc.com/display/Ice35/IceSSL
https://doc.zeroc.com/display/Ice35/Glacier2
https://doc.zeroc.com/display/Ice35/IceBox

	Communicators

