
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Dispatching Invocations to User Threads
By default, operation invocations and AMI callbacks are executed by a thread from a . This behavior is simple and convenient for thread pool
applications because they need not concern themselves with thread creation and destruction. However, there are situations where it is necessary to
respond to operation invocations or AMI callbacks in a particular thread. For example, in a server, you might need to update a database that does not
permit concurrent access from different threads or, in a client, you might need to update a user interface with the results of an invocation. (Many UI
frameworks require all UI updates to be made by a specific thread.)

In Ice for C++, Java, .NET, and Objective-C, you can control which thread receives operation invocations and AMI callbacks, so you can ensure that
all updates are made by a thread you choose. The implementation techniques vary slightly for each language and are explained in the sections that
follow.

On this page:

C++ Dispatcher API
Dispatching with C++11 Lambda Functions

Java Dispatcher API
C# Dispatcher API
Objective-C Dispatcher API
Dispatcher Implementation Notes

C++ Dispatcher API
To install a dispatcher, you must instantiate a class that derives from and with that instance in the Ice::Dispatcher initialize a communicator Init

 structure. All invocations that arrive for this communicator are made via the specified dispatcher. For example:ializationData

C++

class MyDispatcher : public Ice::Dispatcher /*, ... */
 // ...
};

int
main(int argc, char* argv[])
{
 Ice::CommunicatorPtr communicator;

 try {
 Ice::InitializationData initData;
 initData.properties = Ice::createProperties(argc, argv);
 initData.dispatcher = new MyDispatcher();
 communicator = Ice::initialize(argc, argv, initData);

 // ...
 } catch (const Ice::Exception& ex) {
 // ...
 }

 // ...
}

The abstract base class has the following interface:Ice::Dispatcher

https://doc.zeroc.com/display/Ice35/Thread+Pools
https://doc.zeroc.com/display/Ice35/Communicator+Initialization

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

C++

class Dispatcher : virtual public IceUtil::Shared
{
public:
 virtual void dispatch(const DispatcherCallPtr&, const ConnectionPtr&) = 0;
};

typedef IceUtil::Handle<Dispatcher> DispatcherPtr;

The Ice run time invokes the method whenever an operation invocation arrives or an AMI invocation completes, passing an instance of dispatch Di
 and the connection via which the invocation arrived. The job of is to pass the incoming invocation to an operation spatcherCall dispatch

implementation.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value may be
nil if no connection currently exists.

You can write such that it blocks and waits for completion of the invocation because is called by a thread in the server-side dispatch dispatch
thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

The instance encapsulates all the details of the incoming call. It is another abstract base class with the following interface:DispatcherCall

C++

class DispatcherCall : virtual public IceUtil::Shared
{
public:
 virtual ~DispatcherCall() { }

 virtual void run() = 0;
};

typedef IceUtil::Handle<DispatcherCall> DispatcherCallPtr;

Your implementation of is expected to call on the instance (or, more commonly, to cause to be called some dispatch run DispatcherCall run
time later). When you call , the Ice run time processes the invocation in the thread that calls .run run

A very simple way to implement would be as follows:dispatch

C++

class MyDispatcher : public Ice::Dispatcher
public:
 virtual void dispatch(const Ice::DispatcherCallPtr& d, const Ice::ConnectionPtr&)
 {
 d->run(); // Does not throw, blocks until op completes.
 }
};

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls which, in turn, calls dispatch run
on the instance.DispatcherCall

With this simple example, immediately calls , and does not return until the corresponding operation invocation is complete. As a dispatch run run
result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a UI from the correct thread.

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

A common technique to avoid blocking is to use . In response to a UI event (such as the user pressing a "Submit" asynchronous method invocation
button), the application initiates an operation invocation from the corresponding UI callback by calling the operation's method. This is begin_
guaranteed not to block the caller, so the UI remains responsive. Some time later, when the operation completes, the Ice run time invokes an AMI
callback from one of the threads in its thread pool. That callback now has to update the UI, but that can only be done from the UI thread. By using a
dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can arrange for AMI callbacks to be passed to the
UI thread with MFC:

C++

class MyDialog : public CDialog { ... };

class MyDispatcher : public Ice::Dispatcher {
public:
 MyDispatcher(MyDialog* dialog) : _dialog(dialog)
 {
 }

 virtual void
 dispatch(const Ice::DispatcherCallPtr& call, const Ice::ConnectionPtr&)
 {
 _dialog->PostMessage(WM_AMI_CALLBACK, 0,
 reinterpret_cast<LPARAM>(new Ice::DispatcherCallPtr(call)));
 }

private:
 MyDialog* _dialog;
};

The class simply stores the handle for the UI and calls , passing the instance. In turn, MyDispatcher CDialog PostMessage DispatcherCall
this causes the UI thread to receive an event and invoke the UI callback method that was registered to respond to events.WM_AMI_CALLBACK

In turn, the implementation of the callback method calls :run

C++

LRESULT
MyDialog::OnAMICallback(WPARAM, LPARAM lParam)
{
 try {
 Ice::DispatcherCallPtr* call = reinterpret_cast<Ice::DispatcherCallPtr*>(lParam);
 (*call)->run();
 delete call;
 } catch (const Ice::Exception& ex) {
 // ...
 }
 return 0;
}

The Ice run time calls once the asynchronous operation invocation is complete. In turn, this causes the to trigger, which dispatch OnAMICallback
calls . Because the operation has completed already, does not block, so the UI remains responsive.run run

Please see the demo in your Ice distribution for a fully-functional UI client that uses this technique.MFC

Dispatching with C++11 Lambda Functions

With a suitable C++ compiler and an Ice installation that was built with C++11 features enabled, you can use lambda functions instead of defining a
callback class. The dispatcher API includes the following helper function:

https://doc.zeroc.com/pages/viewpage.action?pageId=14680625

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

C++

namespace Ice {
inline DispatcherPtr
newDispatcher(const std::function<void (const Ice::DispatcherCallPtr&, const Ice::ConnectionPtr)>& cb)
{
 return ...;
}
}

The return value of is a object that delegates to your lambda function. You can invoke as shown newDispatcher Dispatcher newDispatcher
below:

C++

Ice::DispatcherPtr disp = Ice::newDispatcher([](const Ice::DispatcherCallPtr& d,
 const Ice::ConnectionPtr&) {
 d->run();
});
initData.dispatcher = disp;
communicator = Ice::initialize(...);

Java Dispatcher API
To install a dispatcher, you must instantiate a class that implements and with that instance in the Ice.Dispatcher initialize a communicator Initia

 structure. All invocations that arrive for this communicator are made via the specified dispatcher. For example:lizationData

https://doc.zeroc.com/display/Ice35/Communicator+Initialization

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

Java

public class MyDispatcher implements Ice.Dispatcher
{
 // ...
}

public class Server
{
 public static void
 main(String[] args)
 {
 Ice.Communicator communicator;

 try {
 Ice.InitializationData initData = new Ice.InitializationData();
 initData.properties = Ice.Util.createProperties(args);
 initData.dispatcher = new MyDispatcher();
 communicator = Ice.Util.initialize(args, initData);

 // ...
 } catch (Ice.LocalException & ex) { {
 // ...
 }

 // ...
 }

 // ...
}

The interface looks as follows:Ice.Dispatcher

Java

public interface Dispatcher
{
 void dispatch(Runnable runnable, Ice.Connection con);
}

The Ice run time invokes the method whenever an operation invocation arrives, passing a and the connection via which the dispatch Runnable
invocation arrived. The job of is to pass the incoming invocation to an operation implementation.dispatch

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value may be
null if no connection currently exists.

You can write such that it blocks and waits for completion of the invocation because is called by a thread in the server-side dispatch dispatch
thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

Your implementation of is expected to call on the instance (or, more commonly, to cause to be called some time dispatch run Runnable run
later). When you call , the Ice run time processes the invocation in the thread that calls .run run

A very simple way to implement would be as follows:dispatch

Ice 3.5.1 Documentation

6 Copyright © 2017, ZeroC, Inc.

Java

public class MyDispatcher implements Ice.Dispatcher
{
 public void
 dispatch(Runnable runnable, Ice.Connection connection)
 {
 // Does not throw, blocks until op completes.
 runnable.run();
 }
}

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls which, in turn, calls dispatch run
on the instance.Runnable

With this simple example, immediately calls , and does not return until the corresponding operation invocation is complete. As a dispatch run run
result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use . In response to a UI event (such as the user pressing a "Submit" asynchronous method invocation
button), the application initiates an operation invocation from the corresponding UI callback by calling the operation's method. This is begin_
guaranteed not to block the caller, so the UI remains responsive. Some time later, when the operation completes, the Ice run time invokes an AMI res

 callback from one of the threads in its thread pool. That callback now has to update the UI, but that can only be done from the UI thread. By ponse
using a dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can arrange for AMI callbacks to be
passed to the UI thread with Swing:

https://doc.zeroc.com/display/Ice35/Asynchronous+Method+Invocation+%28AMI%29+in+Java

Ice 3.5.1 Documentation

7 Copyright © 2017, ZeroC, Inc.

Java

public class Client extends JFrame
{
 public static void main(final String[] args)
 {
 SwingUtilities.invokeLater(new Runnable()
 {
 public void run()
 {
 try {
 new Client(args);
 } catch (Ice.LocalException e) {
 JOptionPane.showMessageDialog(
 null, e.toString(),
 "Initialization failed",
 JOptionPane.ERROR_MESSAGE);
 }
 }
 });
 }

 Client(String[] args)
 {
 Ice.Communicator communicator;

 try {
 Ice.InitializationData initData = new Ice.InitializationData();
 initData.dispatcher = new Ice.Dispatcher()
 {
 public void
 dispatch(Runnable runnable, Ice.Connection connection)
 {
 SwingUtilities.invokeLater(runnable);
 }
 };
 communicator = Ice.Util.initialize(args, initData);
 }
 catch(Throwable ex)
 {
 // ...
 }
 // ...
 }

 // ...
}

The method simply delays the call to by calling , passing it the that is provided by the Ice run time. This dispatch run invokeLater Runnable
causes the Swing UI thread to eventually make the call to . Because the Ice run time does not call until the asynchronous invocation run dispatch
is complete, that call to does not block and the UI remains responsive.run

Please see the demo in your Ice distribution for a fully-functional UI client that uses this technique.swing

C# Dispatcher API
To install a dispatcher, you must with a delegate of type in the structure. All initialize a communicator Ice.Dispatcher InitializationData
invocations that arrive for this communicator are made via the specified dispatcher. For example:

https://doc.zeroc.com/display/Ice35/Communicator+Initialization

Ice 3.5.1 Documentation

8 Copyright © 2017, ZeroC, Inc.

C#

public class Server
{
 public static void Main(string[] args)
 {
 Ice.Communicator communicator = null;

 try {
 Ice.InitializationData initData = new Ice.InitializationData();
 initData.dispatcher = new MyDispatcher().dispatch;
 communicator = Ice.Util.initialize(ref args, initData);
 // ...
 } catch (System.Exception ex) {
 // ...
 }

 // ...
 }

 // ...
}

The delegate is defined as follows:Ice.Dispatcher

C#

public delegate void Dispatcher(System.Action call, Connection con);

The Ice run time calls your delegate whenever an operation invocation arrives, passing a delegate and the connection via which System.Action
the invocation arrived. The job of your delegate is to pass the incoming invocation to an operation implementation.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value may be
null if no connection currently exists.

In this example, the delegate calls a method on an instance of a class. You can write such that it blocks and dispatch MyDispatcher dispatch
waits for completion of the invocation because is called by a thread in the server-side thread pool (for incoming operation invocations) or dispatch
the client-side thread pool (for AMI callbacks).

Your implementation of is expected to invoke the delegate (or, more commonly, to cause it to be invoked some time later). When dispatch call
you invoke the delegate, the Ice run time processes the invocation in the thread that invokes the delegate.call

A very simple way to implement would be as follows:dispatch

C#

public class MyDispatcher
{
 public void
 dispatch(System.Action call, Ice.Connection con)
 {
 // Does not throw, blocks until op completes.
 call();
 }
};

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls which, in turn, invokes dispatch
the delegate.call

With this simple example, immediately invokes the delegate, and that call does not return until the corresponding operation invocation is dispatch
complete. As a result, this implementation ties up a thread in the thread pool for the duration of the call.

Ice 3.5.1 Documentation

9 Copyright © 2017, ZeroC, Inc.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use . In response to a UI event (such as the user pressing a "Submit" asynchronous method invocation
button), the application initiates an operation invocation from the corresponding UI callback by calling the operation's method. This is begin_
guaranteed not to block the caller, so the UI remains responsive. Some time later, when the operation completes, the Ice run time invokes an AMI
callback from one of the threads in its thread pool. That callback now has to update the UI, but that can only be done from the UI thread. By using a
dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can arrange for AMI callbacks to be passed to the
UI thread with WPF:

C#

public partial class MyWindow : Window
{
 private void Window_Loaded(object sender, EventArgs e)
 {
 Ice.Communicator communicator = null;

 try
 {
 Ice.InitializationData initData = new Ice.InitializationData();
 initData.dispatcher =
 delegate(System.Action action, Ice.Connection connection)
 {
 Dispatcher.BeginInvoke(DispatcherPriority.Normal, action);
 };
 communicator = Ice.Util.initialize(initData);
 }
 catch(Ice.LocalException ex)
 {
 // ...
 }
 }

 // ...
}

The delegate calls on the delegate. This causes WPF to queue the actual asynchronous invocation of Dispatcher.BeginInvoke action action
for later execution by the UI thread. Because the Ice run time does not invoke your delegate until an asynchronous operation invocation is complete,
when the UI thread executes the corresponding call to the method, that call does not block and the UI remains responsive.EndInvoke

The net effect is that you can invoke an operation asynchronously from a UI callback method without the risk of blocking the UI thread. For example:

https://doc.zeroc.com/display/Ice35/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp

Ice 3.5.1 Documentation

10 Copyright © 2017, ZeroC, Inc.

C#

public partical class MyWindow : Window
{
 private void someOp_Click(object sender, RoutedEventArgs e)
 {
 MyIntfPrx p = ...;

 // Call remote operation asynchronously.
 // Response is processed in UI thread.
 p.begin_someOp().whenCompleted(this.opResponse, this.opException);
 }

 public void opResponse()
 {
 // Update UI...
 }

 public void opException(Ice.Exception ex)
 {
 // Update UI...
 }
}

Please see the demo in your Ice distribution for a fully-functional UI client that uses this technique.wpf

Objective-C Dispatcher API
To install a dispatcher, you must with a callback (as an Objective-C block) in the structure. All initialize a communicator ICEInitializationData
invocations that arrive for this communicator are made via the specified callback. For example:

Objective-C

int
main(int argc, char* argv[])
{
 objc_startCollectorThread();
 id<ICECommunicator> communicator = nil;
 @try
 {
 ICEInitializationData* initData = [ICEInitializationData initializationData];
 initData.dispatcher =
 ^(id<ICEDispatcherCall> call, id<ICEConnection> con)
 {
 // ...
 };
 communicator = [ICEUtil createCommunicator:&argc argv:argv initData:initData];
 // ...
 }
 @catch(ICELocalException* ex)
 {
 // ...
 }

 // ...
}

The type of the dispatcher callback must match the following block signature:

https://doc.zeroc.com/display/Ice35/Communicator+Initialization

Ice 3.5.1 Documentation

11 Copyright © 2017, ZeroC, Inc.

Objective-C

void(^)(id<ICEDispatcherCall> call, id<ICEConnection> connection)

The Ice run time invokes the dispatcher callback whenever an operation invocation arrives, passing an object implementing the ICEDispatcherCall
protocol and the connection via which the invocation arrived. The job of your callback implementation is to execute the given call.

The connection parameter allows you to decide how to dispatch the operation based on the connection via which it was received. This value may be
nil if no connection currently exists.

You can write the callback such that it blocks and waits for completion of the invocation because the callback is called by a thread in the server-side
thread pool (for incoming operation invocations) or the client-side thread pool (for AMI callbacks).

The protocol defines how to execute the incoming call:ICEDispatcherCall

Objective-C

@protocol ICEDispatcherCall <NSObject>
-(void) run;
@end

Your callback is expected to call on the instance (or, more commonly, to cause run to be called some time later). When run ICEDispatcherCall
you call , the Ice run time processes the invocation in the thread that calls .run run

A very simple way to implement the dispatcher callback would be as follows:

Objective-C

void(^myDispatcher)(id<ICEDispatcherCall>, id<ICEConnection>) =
 ^(id<ICEDispatcherCall> call, id<ICEConnection> con)
 {
 // Does not throw, blocks until op completes.
 [call run];
 };

Whenever the Ice run time receives an incoming operation invocation or when an AMI invocation completes, it calls the dispatcher callback which, in
turn, invokes the run method on the call.

With this simple example, the dispatcher callback immediately invokes , and does not return until the corresponding operation invocation is run run
complete. As a result, this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback method that is called by the Ice run time. However, this simple
mechanism is sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use . In response to a UI event (such as the user pressing a "Submit" asynchronous method invocation
button), the application initiates an operation invocation from the corresponding UI callback by calling the operation's method. This is begin_
guaranteed not to block the caller, so the UI remains responsive. Some time later, when the operation completes, the Ice run time invokes an AMI
callback from one of the threads in its thread pool. That callback now has to update the UI, but that can only be done from the UI thread. By using a
dispatcher, you can easily delegate the update to the correct thread. For example, here is how you can arrange for AMI callbacks to be passed to
Cocoa or Cocoa Touch main thread:

https://doc.zeroc.com/display/Ice35/Asynchronous+Method+Invocation+%28AMI%29+in+Objective-C

Ice 3.5.1 Documentation

12 Copyright © 2017, ZeroC, Inc.

Objective-C

-(void)viewDidLoad
{
 ICEInitializationData* initData = [ICEInitializationData initializationData];
 initData.dispatcher =
 ^(id<ICEDispatcherCall> call, id<ICEConnection> con)
 {
 dispatch_sync(dispatch_get_main_queue(), ^ { [call run]; });
 };

 communicator = [[ICEUtil createCommunicator:initData] retain];

 //
}

The dispatcher callback calls on the main queue. This queues the actual call for later execution by the main thread. Because the dispatch_sync
Ice run time does not invoke the dispatcher callback until an asynchronous operation invocation is complete, when the UI thread executes the
corresponding call, that call does not block and the UI remains responsive.

The net effect is that you can invoke an operation asynchronously from a UI callback method without the risk of blocking the UI thread. For example:

Objective-C

-(void)someOp:(id)sender
{
 id<MyIntfPrx> p = ...;
 [p begin_someOp:^{ [self response]; }
 exception:^(ICEException* ex) { [self exception:ex]; }];
}

-(void) response
{
 // Update UI...
}

-(void) exception:(ICEException* ex)
{
 // Update UI...
}

Please see the Cocoa or iPhone demos in your Ice Touch distribution for fully-functional UI clients that use this technique.

Dispatcher Implementation Notes
An application that uses a custom dispatcher must adhere to the following rules to avoid a deadlock:

Dispatcher implementations must ensure that all requests are dispatched. Failing to dispatch all requests will cause Communicator::
 to hang indefinitely. If a dispatcher has resources that must be reclaimed (e.g., joining with a helper thread), it can safely do so destroy

after has completed.Communicator::destroy

Never make a blocking invocation from the dispatch thread, such as a synchronous proxy operation or a proxy method that can potentially
block, such as . These invocations depend on the dispatcher for their own completion, therefore blocking the dispatch ice_getConnection
thread will inevitably lead to deadlock.

See Also

Asynchronous Method Invocation (AMI) in C++
Asynchronous Method Invocation (AMI) in Java
Asynchronous Method Invocation (AMI) in C-Sharp
Asynchronous Method Invocation (AMI) in Objective-C

https://doc.zeroc.com/pages/viewpage.action?pageId=14680625
https://doc.zeroc.com/display/Ice35/Asynchronous+Method+Invocation+%28AMI%29+in+Java
https://doc.zeroc.com/display/Ice35/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp
https://doc.zeroc.com/display/Ice35/Asynchronous+Method+Invocation+%28AMI%29+in+Objective-C

	Dispatching Invocations to User Threads

