
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Thread Safety
The Ice run time itself is fully thread safe, meaning multiple application threads can safely call methods on objects such as communicators, object
adapters, and proxies without synchronization problems. As a developer, you must also be concerned with thread safety because the Ice run time
can dispatch multiple invocations concurrently in a server. In fact, it is possible for multiple requests to proceed in parallel within the same servant
and within the same operation on that servant. It follows that, if the operation implementation manipulates non-stack storage (such as member
variables of the servant or global or static data), you must interlock access to this data to avoid data corruption.

The need for thread safety in an application depends on its configuration. Using the default configuration typically makes synchronization thread pool
unnecessary because at most one operation can be dispatched at a time. Thread safety becomes an issue once you increase the maximum size of a
thread pool.

Ice uses the native synchronization and threading primitives of each platform. For C++ users, Ice provides a collection of convenient and portable wra
 for use by Ice applications.pper classes

On this page:

Threading Issues with Marshaling
Thread Creation and Destruction Hooks
Installing Thread Hooks with a Plug-in

Threading Issues with Marshaling
The marshaling semantics of the Ice run time present a subtle thread safety issue that arises when an operation returns data by reference. In C++,
the only relevant case is returning an instance of a Slice class, either directly or nested as a member of another type. In Java, .NET, and the scripting
languages, Slice structures, sequences, and dictionaries are also affected.

The potential for corruption occurs whenever a servant returns data by reference, yet continues to hold a reference to that data. For example,
consider the following Java implementation:

Java

public class GridI extends _GridDisp
{
 GridI()
 {
 _grid = // ...
 }

 public int[][]
 getGrid(Ice.Current curr)
 {
 return _grid;
 }

 public void
 setValue(int x, int y, int val, Ice.Current curr)
 {
 _grid[x][y] = val;
 }

 private int[][] _grid;
}

Suppose that a client invoked the operation. While the Ice run time marshals the returned array in preparation to send a reply message, it is getGrid
possible for another thread to dispatch the operation on the same servant. This race condition can result in several unexpected outcomes, setValue
including a failure during marshaling or inconsistent data in the reply to . Synchronizing the and operations would not getGrid getGrid setValue
fix the race condition because the Ice run time performs its marshaling outside of this synchronization.

One solution is to implement accessor operations, such as , so that they return copies of any data that might change. There are several getGrid
drawbacks to this approach:

Excessive copying can have an adverse affect on performance.
The operations must return deep copies in order to avoid similar problems with nested values.
The code to create deep copies is tedious and error-prone to write.

https://doc.zeroc.com/display/Ice35/Thread+Pools
https://doc.zeroc.com/pages/viewpage.action?pageId=14680294
https://doc.zeroc.com/pages/viewpage.action?pageId=14680294

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Another solution is to make copies of the affected data only when it is modified. In the revised code shown below, replaces with a setValue _grid
copy that contains the new element, leaving the previous contents of unchanged:_grid

Java

public class GridI extends _GridDisp
{
 ...

 public synchronized int[][]
 getGrid(Ice.Current curr)
 {
 return _grid;
 }

 public synchronized void
 setValue(int x, int y, int val, Ice.Current curr)
 {
 int[][] newGrid = // shallow copy...
 newGrid[x][y] = val;
 _grid = newGrid;
 }

 ...
}

This allows the Ice run time to safely marshal the return value of because the array is never modified again. For applications where data is getGrid
read more often than it is written, this solution is more efficient than the previous one because accessor operations do not need to make copies.
Furthermore, intelligent use of shallow copying can minimize the overhead in mutating operations.

Finally, a third approach changes accessor operations to use AMD in order to regain control over marshaling. After annotating the getGrid
operation with metadata, we can revise the servant as follows:amd

Java

public class GridI extends _GridDisp
{
 ...

 public synchronized void
 getGrid_async(AMD_Grid_getGrid cb, Ice.Current curr)
 {
 cb.ice_response(_grid);
 }

 public synchronized void
 setValue(int x, int y, int val, Ice.Current curr)
 {
 _grid[x][y] = val;
 }

 ...
}

Normally, AMD is used in situations where the servant needs to delay its response to the client without blocking the calling thread. For , that getGrid
is not the goal; instead, as a side-effect, AMD provides the desired marshaling behavior. Specifically, the Ice run time marshals the reply to an
asynchronous request at the time the servant invokes on the AMD callback object. Because and are ice_response getGrid setValue
synchronized, this guarantees that the data remains in a consistent state during marshaling.

Thread Creation and Destruction Hooks

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

On occasion, it is necessary to intercept the creation and destruction of threads created by the Ice run time, for example, to interoperate with libraries
that require applications to make thread-specific initialization and finalization calls (such as COM's and). Ice CoInitializeEx CoUninitialize
provides callbacks to inform an application when each run-time thread is created and destroyed. For C++, the callback class looks as follows:

C++

class ThreadNotification : public IceUtil::Shared {
public:
 virtual void start() = 0;
 virtual void stop() = 0;
};
typedef IceUtil::Handle<ThreadNotification> ThreadNotificationPtr;

To receive notification of thread creation and destruction, you must derive a class from and implement the and ThreadNotification start stop
member functions. These functions will be called by the Ice run by each thread as soon as it is created, and just before it exits. You must install your
callback class in the Ice run time when you by setting the member of the structure.create a communicator threadHook InitializationData

For example, you could define a callback class and register it with the Ice run time as follows:

C++

class MyHook : public virtual Ice::ThreadNotification {
public:
 void start()
 {
 cout << "start: id = " << ThreadControl().id() << endl;
 }
 void stop()
 {
 cout << "stop: id = " << ThreadControl().id() << endl;
 }
};

int
main(int argc, char* argv[])
{
 // ...

 Ice::InitializationData id;
 id.threadHook = new MyHook;
 communicator = Ice::initialize(argc, argv, id);

 // ...
}

The implementation of your and methods can make whatever thread-specific calls are required by your application.start stop

For Java and C#, is an interface:Ice.ThreadNotification

Java/C#

public interface ThreadNotification {
 void start();
 void stop();
}

To receive the thread creation and destruction callbacks, you must derive a class from this interface that implements the and methods, start stop
and register an instance of that class when you create the communicator. (The code to do this is analogous to the C++ version.)

For Python, the interface is:

https://doc.zeroc.com/display/Ice35/Communicator+Initialization

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Python

class ThreadNotification(object):
 def __init__(self):
 pass

 # def start():
 # def stop():

The Ice run time calls the and methods of the class instance you provide to when it creates and destroys threads.start stop Ice.initialize

Installing Thread Hooks with a Plug-in
The thread hook facility described requires that you modify a program's source code in order to receive callbacks when threads in the Ice run above
time are created and destroyed. It is also possible to install thread hooks using the , which is useful for adding thread hooks to an Ice plug-in facility
existing program that you cannot (or prefer not to) modify.

Ice provides a base class named for C++, Java, and C# that supplies the necessary functionality. The C++ class definition is ThreadHookPlugin
shown below:

C++

namespace Ice {
class ThreadHookPlugin : public Ice::Plugin {
public:

 ThreadHookPlugin(const CommunicatorPtr& communicator, const ThreadNotificationPtr&);

 virtual void initialize();

 virtual void destroy();
};
}

The equivalent definitions for Java and C# are quite similar and therefore not presented here.

The constructor installs the given object into the specified communicator. The and ThreadHookPlugin ThreadNotification initialize dest
 methods are empty, but you can subclass and override these methods if necessary.roy ThreadHookPlugin

In order to create a thread hook plug-in, you must do the following:

Define and export a factory class (for Java and C#) or factory function (for C++) that returns an instance of , as ThreadHookPlugin
described in the .plug-in API
Implement the object that you will pass to the constructor.ThreadNotification ThreadHookPlugin
Package your code into a format that is suitable for dynamic loading, such as a shared library or DLL for C++ or an assembly for C#.

To install your plug-in, use a configuration property like the one shown below:

Ice.Plugin.MyThreadHookPlugin=MyHooks:createPlugin ...

The first component of the property value represents the plug-in's entry point. For C++, this value includes the abbreviated name of the shared library
or DLL () and the name of a factory function ().MyHooks createPlugin

If your property value is language-specific and the configuration file containing this property is shared by programs in multiple implementation
languages, you can use an alternate syntax that is loaded only by the Ice run time for a certain language. For example, here is the C++-specific
version:

Ice.Plugin.MyThreadHookPlugin.cpp=MyHooks:createPlugin ...

For more information, see .Ice Plug-In Properties

https://doc.zeroc.com/display/Ice35/Plug-in+Facility
https://doc.zeroc.com/display/Ice35/Plug-in+API
https://doc.zeroc.com/display/Ice35/Ice+Plug-In+Properties

Ice 3.5.1 Documentation

5 Copyright © 2017, ZeroC, Inc.

See Also

Communicator Initialization
Threads and Concurrency with C++
Plug-in Facility
Plug-in API
Ice Plug-In Properties

https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/pages/viewpage.action?pageId=14680294
https://doc.zeroc.com/display/Ice35/Plug-in+Facility
https://doc.zeroc.com/display/Ice35/Plug-in+API
https://doc.zeroc.com/display/Ice35/Ice+Plug-In+Properties

	Thread Safety

