
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Plug-in API
On this page:

The Plugin Interface
C++ Plug-in Factory
Java Plug-in Factory
C# Plug-in Factory

The  InterfacePlugin
The plug-in facility defines a  Slice interface that all plug-ins must implement:local

Slice

module Ice {
local interface Plugin {
    void initialize();
    void destroy();
};
};

The lifecycle of an Ice plug-in is structured to accommodate dependencies between plug-ins, such as when a logger plug-in needs to use IceSSL for 
its logging activities. Consequently, a plug-in object's lifecycle consists of four phases:

Construction
The Ice run time uses a language-specific factory API for instantiating plug-ins. During construction, a plug-in can acquire resources but 
must not spawn new threads or perform activities that depend on other plug-ins.

Initialization
After all plug-ins have been constructed, the Ice run time invokes  on each plug-in. The order in which plug-ins are initialized is initialize
undefined by default but can be  using a configuration property. If a plug-in has a dependency on another plug-in, you must customized
configure the Ice run time so that initialization occurs in the proper order. In this phase it is safe for a plug-in to spawn new threads; it is also 
safe for a plug-in to interact with other plug-ins and use their services, as long as those plug-ins have already been initialized. If initialize
raises an exception, the Ice run time invokes  on all plug-ins that were successfully initialized (in the reverse order of initialization) destroy
and raises the original exception to the application.

Active
The active phase spans the time between initialization and destruction. Plug-ins must be designed to operate safely in the context of 
multiple threads.

Destruction
The Ice run time invokes  on each plug-in in the reverse order of initialization.destroy

This lifecycle is repeated for each new communicator that an application creates and destroys.

C++ Plug-in Factory
In C++, the plug-in factory is an exported function with C linkage having the following signature:

C++

extern "C"
{
ICE_DECLSPEC_EXPORT Ice::Plugin*
functionName(const Ice::CommunicatorPtr& communicator,
             const std::string& name,
             const Ice::StringSeq& args);
}

https://doc.zeroc.com/display/Ice35/Local+Types
https://doc.zeroc.com/display/Ice35/Advanced+Plug-in+Topics


Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

You can define the function with any name you wish. We recommend that you use the  macro to ensure that the function is ICE_DECLSPEC_EXPORT
exported correctly on all platforms. Since the function uses C linkage, it must return the plug-in object as a regular C++ pointer and not as an Ice 
smart pointer. Furthermore, the function must not raise C++ exceptions; if an error occurs, the function must return zero.

The arguments to the function consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and any 
arguments that were specified in the .plug-in's configuration

Java Plug-in Factory
In Java, a plug-in factory must implement the  interface:Ice.PluginFactory

Java

package Ice;

public interface PluginFactory {
    Plugin create(Communicator communicator, String name, String[] args);
}

The arguments to the  method consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and create
any arguments that were specified in the .plug-in's configuration

The  method can return  to indicate that a general error occurred, or it can raise  to provide more create null PluginInitializationException
detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of .PluginInitializationException

C# Plug-in Factory
In .NET, a plug-in factory must implement the  interface:Ice.PluginFactory

C#

namespace Ice {
    public interface PluginFactory
    {
        Plugin create(Communicator communicator, string name, string[] args);
    }
}

The arguments to the  method consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and create
any arguments that were specified in the .plug-in's configuration

The  method can return  to indicate that a general error occurred, or it can raise  to provide more create null PluginInitializationException
detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of .PluginInitializationException

See Also

Plug-in Configuration
Advanced Plug-in Topics

https://doc.zeroc.com/display/Ice35/Plug-in+Configuration
https://doc.zeroc.com/display/Ice35/Plug-in+Configuration
https://doc.zeroc.com/display/Ice35/Plug-in+Configuration
https://doc.zeroc.com/display/Ice35/Plug-in+Configuration
https://doc.zeroc.com/display/Ice35/Advanced+Plug-in+Topics

	Plug-in API

