
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

C++ Strings and Character Encoding
On the wire, Ice all strings as Unicode strings in UTF-8 encoding. For languages other than C++, Ice uses strings in their language-native transmits
Unicode representation and converts automatically to and from UTF-8 for transmission, so applications can transparently use characters from non-
English alphabets.

However, for C++, how strings are represented inside a process depends on the platform as well as the mapping that is chosen for a particular string:
the default mapping to , or the to .std::string alternative mapping std::wstring

We will explore how strings are encoded by the Ice for C++ run time, and how you can achieve automatic conversion of strings in their native
representation to and from UTF-8. For an example of using string converters in C++, refer to the sample program provided in the demo/Ice

 subdirectory of your Ice distribution./converter

By default, the Ice run time encodes strings as follows:

Narrow strings (that is, strings mapped to) are presented to the application in UTF-8 encoding and, similarly, the application std::string
is expected to provide narrow strings in UTF-8 encoding to the Ice run time for transmission.

With this default behavior, the application code is responsible for converting between the native codeset for 8-bit characters and UTF-8. For
example, if the native codeset is ISO Latin-1, the application is responsible for converting between UTF-8 and narrow (8-bit) characters in
ISO Latin-1 encoding.

Also note that the default behavior does not require the application to do anything if it only uses characters in the ASCII range. (This is
because a string containing only characters in the (7-bit) ASCII range is also a valid UTF-8 string.)

Wide strings (that is, strings mapped to) are automatically encoded as Unicode by the Ice run time as appropriate for the std::wstring
platform. For example, for Windows, the Ice run time converts between UTF-8 and UTF-16 in little-endian representation whereas, for Linux,
the Ice run time converts between UTF-8 and UTF-32 in the endian-ness appropriate for the host CPU.

With this default behavior, wide strings are transparently converted between their on-the-wire representation and their native C++
representation as appropriate, so application code need not do anything special. (The exception is if an application uses a non-Unicode
encoding, such as Shift-JIS, as its native codeset.)wstring

Topics

Installing String Converters
UTF-8 Conversion
String Parameters in Local Calls
Built-in String Converters
String Conversion Convenience Functions
The iconv String Converter
The Ice String Converter Plug-in
Custom String Converter Plug-ins

See Also

The Ice Protocol
C++ Mapping for Built-In Types

This discussion is only relevant for C++. For scripting language mappings based on Ice for C++, it is possible to use Ice's default string
 and to .converter plug-in install your own string converter plug-in

https://doc.zeroc.com/display/Ice35/Basic+Data+Encoding
https://doc.zeroc.com/pages/viewpage.action?pageId=14680626#C++MappingforBuiltInTypes-wstring
https://doc.zeroc.com/display/Ice35/Installing+String+Converters
https://doc.zeroc.com/display/Ice35/UTF-8+Conversion
https://doc.zeroc.com/display/Ice35/String+Parameters+in+Local+Calls
https://doc.zeroc.com/display/Ice35/Built-in+String+Converters
https://doc.zeroc.com/display/Ice35/String+Conversion+Convenience+Functions
https://doc.zeroc.com/display/Ice35/The+iconv+String+Converter
https://doc.zeroc.com/display/Ice35/The+Ice+String+Converter+Plug-in
https://doc.zeroc.com/display/Ice35/Custom+String+Converter+Plug-ins
https://doc.zeroc.com/display/Ice35/The+Ice+Protocol
https://doc.zeroc.com/pages/viewpage.action?pageId=14680626
https://doc.zeroc.com/display/Ice35/The+Ice+String+Converter+Plug-in
https://doc.zeroc.com/display/Ice35/The+Ice+String+Converter+Plug-in
https://doc.zeroc.com/display/Ice35/Custom+String+Converter+Plug-ins

	C++ Strings and Character Encoding

