
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Threading Guarantees for Servant Locators
The Ice run time guarantees that every operation invocation that involves a is bracketed by calls to and , that is, servant locator locate finished
every call to is balanced by a corresponding call to (assuming that the call to actually returned a servant, of course).locate finished locate

In addition, the Ice run time guarantees that , the operation, and are called by the same thread. This guarantee is important locate finished
because it allows you to use and to implement thread-specific pre- and post-processing around operation invocations. (For locate finished
example, you can start a transaction in and commit or roll back that transaction in , or you can acquire a lock in and locate finished locate
release the lock in .finished

The Ice run time also guarantees that is called when you destroy the object adapter to which the servant locator is attached. The deactivate deact
 call is made only once all operations that involved the servant locator are finished, that is, is guaranteed not to run concurrently ivate deactivate

with or , and is guaranteed to be the last call made to a servant locator.locate finished

Beyond this, the Ice run time provides no threading guarantees for servant locators. In particular, it is possible for invocations of:

locate to proceed concurrently (for the same object identity or for different object identities).
finished to proceed concurrently (for the same object identity or for different object identities).
locate and to proceed concurrently (for the same object identity or for different object identities).finished

These semantics allow you to extract the maximum amount of parallelism from your application code (because the Ice run time does not serialize
invocations when serialization may not be necessary). Of course, this means that you must from and protect access to shared data locate finished
with mutual exclusion primitives as necessary.

See Also

The ServantLocator Interface
The Ice Threading Model

Both transactions and locks usually are thread-specific, that is, only the thread that started a transaction can commit it or roll it back, and
only the thread that acquired a lock can release the lock.

If you are using , the thread that starts a call is not necessarily the thread that finishes it. In that case, asynchronous method dispatch fini
 is called by whatever thread executes the operation implementation, which may be a different thread than the one that called .shed locate

https://doc.zeroc.com/display/Ice35/The+ServantLocator+Interface
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/The+ServantLocator+Interface
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Terminology#Terminology-AsynchronousMethodDispatch

	Threading Guarantees for Servant Locators

