Ice 3.5.1 Documentation

The C++ Mutex Class

This page describes how to use mutexes — one of the available synchronization primitives.
On this page:
® Mutex Member Functions

® Adding Thread Safety to the File System Application in C++
® Guaranteed Unlocking of Mutexes in C++

Mutex Member Functions

Theclass | ceUti | :: Mut ex (definedinlceUti |/ Mitex. h) provides a simple non-recursive mutual exclusion mechanism:

C++

nanespace lceUtil {
enum Mut exProtocol { Priolnherit, PrioNone };

class Mutex {

public:
Mt ex() ;
Mut ex(Mut exPr ot ocol p);
~Mut ex();

void | ock() const;
bool trylLock() const;
voi d unl ock() const;

typedef LockT<Mitex> Lock;
typedef TryLockT<Miutex> TrylLock;

The member functions of this class work as follows:
®* Mitex()
Mut ex(Mut exPr ot ocol p)
You can optionally specify a mutex protocol when you construct a mutex. The mutex protocol controls how the mutex behaves with respect
to thread priorities. Default-constructed mutexes use a system-wide default.

®* |ock
The | ock function attempts to acquire the mutex. If the mutex is already locked, it suspends the calling thread until the mutex becomes
available. The call returns once the calling thread has acquired the mutex.

® trylLock
The t ryLock function attempts to acquire the mutex. If the mutex is available, the call returns true with the mutex locked. Otherwise, if the
mutex is locked by another thread, the call returns false.

® unl ock
The unl ock function unlocks the mutex.

Note that | ceUt i | : : Mut ex is a non-recursive mutex implementation. This means that you must adhere to the following rules:

® Do not call | ock on the same mutex more than once from a thread. The mutex is not recursive so, if the owner of a mutex attempts to lock it
a second time, the behavior is undefined.

® Do not call unl ock on a mutex unless the calling thread holds the lock. Calling unl ock on a mutex that is not currently held by any thread,
or calling unl ock on a mutex that is held by a different thread, results in undefined behavior.

Use the | ceUti | : : RecMut ex class if you need recursive semantics.

Adding Thread Safety to the File System Application in C++

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=14680300
https://doc.zeroc.com/pages/viewpage.action?pageId=14680299

Ice 3.5.1 Documentation

Recall that the implementation of the r ead and wr i t e operations for our file system server is not thread safe:

C++

Fi |l esystem : Li nes
Filesystem:Filel::read(const Ice::Current& const

{
}

return _lines; /1 Not thread safe!

voi d

Filesystem:Filel::wite(const Filesystem:Lines& text,
const lce::Currentg&)

{

_lines = text; /1 Not thread safe!

}

The problem here is that, if we receive concurrent invocations of r ead and wr i t e, one thread will be assigning to the _I i nes vector while another
thread is reading that same vector. The outcome of such concurrent data access is undefined; to avoid the problem, we need to serialize access to
the _I i nes member with a mutex. We can make the mutex a data member of the Fi | el class and lock and unlock it in the read and wri te
operations:

C++

#i nclude <lceltil/Mitex. h>
11

nanespace Filesystem {

11
class Filel : virtual public File,
virtual public Filesystem: Nodel {

public:

Il As before...
private:

Lines _lines;

lceUtil::Mitex _fileMitex;
s
11

}

Fi | esystem : Li nes
Filesystem:Filel::read(const Ice::Current& const

{
_fileMutex.lock();
Lines | = _lines;
_fileMutex.unl ock();
return |;
}
voi d
Filesystem:Filel::wite(const Filesystem:Lines& text, const lce::Currentg&)
{
_fileMutex.lock();
_lines = text;
_fileMutex.unlock();
}

The Fi | el class here is identical to the original implementation, except that we have added the _f i | eMut ex data member. Theread andw i te
operations lock and unlock the mutex to ensure that only one thread can read or write the file at a time. Note that, by using a separate mutex for each
Fi | el instance, it is still possible for multiple threads to concurrently read or write files, as long as they each access a different file. Only concurrent
accesses to the same file are serialized.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=14680654#ExampleofaFileSystemServerinC++-TheServantImplementationinC++

Ice 3.5.1 Documentation

The implementation of r ead is somewhat awkward here: we must make a local copy of the file contents while we are holding the lock and return that
copy. Doing so is necessary because we must unlock the mutex before we can return from the function. However, as we will see in the next section,
the copy can be avoided by using a helper class that unlocks the mutex automatically when the function returns.

Guaranteed Unlocking of Mutexes in C++

Using the raw | ock and unl ock operations on mutexes has an inherent problem: if you forget to unlock a mutex, your program will deadlock.
Forgetting to unlock a mutex is easier than you might suspect, for example:

C++

Fi | esystem : Li nes
Filesystem:File::read(const Ice::Current& const

{
_fileMutex.lock(); /'l Lock the nutex
Lines | = readFil eContents(); /'l Read from dat abase
_fileMutex.unlock(); /1 Unl ock the nutex
return |;

}

Assume that we are keeping the contents of the file on secondary storage, such as a database, and that the r eadFi | eCont ent s function accesses
the file. The code is almost identical to the previous example but now contains a latent bug: if r eadFi | eCont ent s throws an exception, the r ead
function terminates without ever unlocking the mutex. In other words, this implementation of r ead is not exception-safe.

The same problem can easily arise if you have a larger function with multiple return paths. For example:

C++
voi d
Sonmed ass::sonmeFunction(/* parans here... */)
{
_mutex. | ock(); /1 Lock a mutex

/1 Lots of conplex code here...
if (someCondition) {

/1 More conplex code here. ..

return; /1 Cops!!!
}

/1 More code here. ..

_mut ex. unl ock(); /1 Unl ock the nutex

In this example, the early return from the middle of the function leaves the mutex locked. Even though this example makes the problem quite obvious,
in large and complex pieces of code, both exceptions and early returns can cause hard-to-track deadlock problems. To avoid this, the Mut ex class
contains two type definitions for helper classes, called Lock and TryLock:

C++

namespace |ceUtil {

class Mutex {
/1

typedef LockT<Mutex> Lock;

typedef TryLockT<Miut ex> TrylLock;
I

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

LockT and TryLockT are simple templates that primarily consist of a constructor and a destructor; the LockT constructor calls | ock on its
argument, and the Tr yLockT constructor calls t r yLock on its argument. The destructors call unl ock if the mutex is locked when the template goes
out of scope. By instantiating a local variable of type Lock or Tr yLock, we can avoid the deadlock problem entirely:

C++
voi d
Soned ass: : someFunction(/* parans here... */)
{
lceUtil::Mitex::Lock lock(_nutex); // Lock a mutex

/1 Lots of conplex code here...

if (someCondition) {
/1l More conplex code here. ..
return; /1 No problem

/1 More code here. ..

} /] Destructor of |ock unlocks the nutex

@ This is an example of the RAIl (Resource Acquisition Is Initialization) idiom [1].

On entry to someFunct i on, we instantiate a local variable | ock, of type | ceUti | : : Mut ex: : Lock. The constructor of | ock calls | ock on the
mutex so the remainder of the function is inside a critical region. Eventually, someFunct i on returns, either via an ordinary return (in the middle of
the function or at the end) or because an exception was thrown somewhere in the function body. Regardless of how the function terminates, the C++
run time unwinds the stack and calls the destructor of | ock, which unlocks the mutex, so we cannot get trapped by the deadlock problem we had
previously.

Both the Lock and Tr yLock templates have a few member functions:

® void acquire() const
This function attempts to acquire the lock and blocks the calling thread until the lock becomes available. If the caller calls acqui re on a
mutex it has locked previously, the function throws Thr eadLockedExcept i on.

® bool tryAcquire() const
This function attempts to acquire the mutex. If the mutex can be acquired, it returns true with the mutex locked; if the mutex cannot be
acquired, it returns false. If the caller calls t r yAcqui r e on a mutex it has locked previously, the function throws Thr eadLockedExcepti on

® void rel ease() const
This function releases a previously locked mutex. If the caller calls release on a mutex it has unlocked previously, the function throws Thr ea
dLockedExcepti on.

® bool acquired() const
This function returns true if the caller has locked the mutex previously, otherwise it returns false. If you use the Tr yLock template, you must
call acqui r ed after instantiating the template to test whether the lock actually was acquired.

These functions are useful if you want to use the Lock and Tr yLock templates for guaranteed unlocking, but need to temporarily release the lock:

Copyright © 2017, ZeroC, Inc.

C++

Ice 3.5.1 Documentation

lceUtil::Mitex:: TryLock nm(soneMit ex);

ifo(
{

}

m acqui red())

/'l Got the lock, do processing here...

if (release_condition) {
mrel ease();

}

/1 Miutex is now unl ocked, soneone else can lock it.
11

m acquire(); // Block until nutex becones avail abl e.
11

if (release_condition) {
mrel ease();

}

/1 Miutex is now unl ocked, soneone else can lock it.
/1

/1 Spin on the mutex until it becones avail able.

while (!'mtryLock()) {
/1 Do some other processing here...

}
/1 Mutex |ocked again at this point.

/1

} /1 Cose scope, mis unlocked by its destructor.

@ Tip

You should make it a habit to always use the Lock and Tr yLock helpers instead of calling | ock and unl ock directly. Doing so results in
code that is easier to understand and maintain.

Using the Lock helper, we can rewrite the implementation of our r ead and wr i t e operations as follows:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

C++

Fi | esystem : Li nes
Filesystem:Filel::read(const Ice::Current& const

{
lceUtil::Mitex::Lock |ock(_fileMitex);
return _lines;
}
voi d
Filesystem:Filel::wite(const Filesystem:Lines& text, const lce::Currentg&)
{
lceUtil::Mitex::Lock |ock(_fileMitex);
_lines = text;
}

Note that this also eliminates the need to make a copy of the _| i nes data member: the return value is initialized under protection of the mutex and
cannot be modified by another thread once the destructor of | ock unlocks the mutex.

See Also

® Example of a File System Server in C++
® Priority Inversion in C++
® The C++ RecMutex Class

References

1. Stroustrup, B. 1997. The C++ Programming Language. Reading, MA: Addison-Wesley.

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/pages/viewpage.action?pageId=14680654
https://doc.zeroc.com/pages/viewpage.action?pageId=14680300
https://doc.zeroc.com/pages/viewpage.action?pageId=14680299
http://amzn.com/0201700735

	The C++ Mutex Class

