
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

The C++ RecMutex Class
A  cannot be locked more than once, even by the thread that holds the lock. This frequently becomes a problem if a program non-recursive mutex
contains a number of functions, each of which must acquire a mutex, and you want to call one function as part of the implementation of another 
function:

C++

IceUtil::Mutex _mutex;

void
f1()
{
    IceUtil::Mutex::Lock lock(_mutex);
    // ...
}

void
f2()
{
    IceUtil::Mutex::Lock lock(_mutex);
    // Some code here...

    // Call f1 as a helper function
    f1();                               // Deadlock!

    // More code here...
}

f1 and  each correctly lock the mutex before manipulating data but, as part of its implementation,  calls . At that point, the program deadlocks f2 f2 f1
because  already holds the lock that  is trying to acquire. For this simple example, the problem is obvious. However, in complex systems with f2 f1
many functions that acquire and release locks, it can get very difficult to track down this kind of situation: the locking conventions are not manifest 
anywhere but in the source code and each caller must know which locks to acquire (or not to acquire) before calling a function. The resulting 
complexity can quickly get out of hand.

Ice provides a recursive mutex class  (defined in ) that avoids this problem:RecMutex IceUtil/RecMutex.h

C++

namespace IceUtil {

    class RecMutex {
    public:
        RecMutex();
        RecMutex(MutexProtocol p);
        ~RecMutex();

        void lock() const;
        bool tryLock() const;
        void unlock() const;

        typedef LockT<RecMutex> Lock;
        typedef TryLockT<RecMutex> TryLock;
    };
}

Note that the signatures of the operations are the same as for . However,  implements a recursive mutex:IceUtil::Mutex RecMutex

RecMutex()
RecMutex(MutexProtocol p)
You can optionally specify a mutex protocol when you construct a mutex. The mutex protocol controls how the mutex behaves with respect 
to . Default-constructed mutexes use a system-wide default.thread priorities

https://doc.zeroc.com/pages/viewpage.action?pageId=14680298
https://doc.zeroc.com/pages/viewpage.action?pageId=14680300


Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

lock
The  function attempts to acquire the mutex. If the mutex is already locked by another thread, it suspends the calling thread until the lock
mutex becomes available. If the mutex is available or is already locked by the calling thread, the call returns immediately with the mutex 
locked.

tryLock
The  function works like , but, instead of blocking the caller, it returns false if the mutex is locked by another thread. tryLock lock
Otherwise, the return value is true.

unlock
The  function unlocks the mutex.unlock

As for non-recursive mutexes, you must adhere to a few simple rules for recursive mutexes:

Do not call  on a mutex unless the calling thread holds the lock.unlock
You must call  as many times as you called  for the mutex to become available to another thread. (Internally, a recursive mutex unlock lock
is implemented with a counter that is initialized to zero. Each call to  increments the counter and each call to  decrements the lock unlock
counter; the mutex is made available to another thread when the counter returns to zero.)

Using recursive mutexes, the code fragment shown earlier works correctly:

C++

#include <IceUtil/RecMutex.h>
// ...

IceUtil::RecMutex _mutex;       // Recursive mutex

void
f1()
{
    IceUtil::RecMutex::Lock lock(_mutex);
    // ...
}

void
f2()
{
    IceUtil::RecMutex::Lock lock(_mutex);
    // Some code here...

    // Call f1 as a helper function
    f1();                               // Fine

    // More code here...
}

Note that the type of the mutex is now  instead of , and that we are using the  type definition provided by the  class, RecMutex Mutex Lock RecMutex
not the one provided by the  class.Mutex

See Also

The C++ Mutex Class
Priority Inversion in C++

https://doc.zeroc.com/pages/viewpage.action?pageId=14680298
https://doc.zeroc.com/pages/viewpage.action?pageId=14680300

	The C++ RecMutex Class

