
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Silverlight and .NET Compact Framework Support
Ice for .NET includes support for Silverlight and the .NET Compact Framework (.NET CF).

On this page:

Using Ice for Silverlight and .NET CF
Limitations of Ice for Silverlight and .NET CF
Managing Factory Assemblies

Using Ice for Silverlight and .NET CF
These versions of Ice differ from Ice for .NET in several ways, therefore you must re-compile Ice to target Silverlight or .NET CF. The Ice installer for

 includes the Silverlight and .NET CF versions of the Ice run time in and Windows \bin\sl\Ice.dllinstall-dir install-dir\bin\cf\Ice.
, respectively. The automatically selects the appropriate DLL for your project. To build Ice for .NET CF in a source dll Ice Visual Studio Add-in

distribution, enable in ; to build Ice for Silverlight, enable in the same file.COMPACT cs\config\Make.rules.mak.cs SILVERLIGHT

Limitations of Ice for Silverlight and .NET CF
This table lists the Ice for .NET features that may not be available when using Silverlight or .NET CF:

Feature Silverlight .NET CF

Protocol compression No No

Serializable objects No No

IceSSL transport plug-in No No

ICE_CONFIG environment variable No No

Ice.Application class No Yes (without signal support)

Glacier2.Application class No Yes

Thread priorities No Yes

Server-side support No Yes

Bi-directional callbacks Yes Yes

Loading properties from Windows registry No Yes

Ice.StdOut and propertiesIce.StdErr No Yes

Ice.PrintProcessId property No Yes

Ice.LogFile property No Yes

Ice.TCP.SndSize and Ice.TCP.RcvSize properties Yes No

Multi-homed DNS addresses No Yes

Dynamic loading of class and exception factories No No

With respect to multi-homed DNS addresses, the Silverlight API never returns more than one IP address when performing a DNS lookup, even for a
multi-homed host name that is associated with multiple IP addresses. As a result, the Ice for Silverlight run time cannot attempt to transparently
establish a connection to all of the IP addresses associated with a multi-homed host name.

Managing Factory Assemblies

https://doc.zeroc.com/display/Ice35/Using+the+Windows+Binary+Distribution
https://doc.zeroc.com/display/Ice35/Using+the+Windows+Binary+Distribution
https://doc.zeroc.com/display/Ice35/Visual+Studio+Add-in

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

When receiving a Slice user exception or a concrete Slice object-by-value, the Ice run time must be able to dynamically translate the encoded Slice
type ID (such as) into a .NET class name (such as), dynamically locate that class, and instantiate it. ::MyModule::MyType MyModule.MyType
This is convenient for .NET applications because it requires no additional user configuration; at startup, the Ice for .NET run time recursively loads all
dependent assemblies used by the program to ensure that any generated classes are available if necessary.

Neither Silverlight nor the Compact Framework allow a program to discover its dependent assemblies, so this strategy cannot work. Consequently,
Ice adds the new configuration property so that you can explicitly list any assemblies that contain the generated code for Ice.FactoryAssemblies
user exceptions or concrete classes. When searching for a class, Ice first checks in the assemblies specified by this property. If the type is not found,
Ice automatically looks in the standard Ice assemblies (, , , , , and).Ice Glacier2 IceBox IceGrid IcePatch2 IceStorm

Note that the program itself is also considered an assembly. If you compiled the main program directly with Slice-generated code, your Ice.
 property must include the program itself if the generated code includes user exceptions or concrete classes. For simple build FactoryAssemblies

scenarios in which all generated code is compiled directly into the executable, the following configuration setting is sufficient:

Ice.FactoryAssemblies=client

This example assumes the executable is named . On the other hand, if Slice-generated code is also compiled into a dependent client.exe
assembly, your configuration might look like this instead:

Ice.FactoryAssemblies=client MyOtherAssembly

Failing to define can cause the Ice run time in the receiver to raise , Ice.FactoryAssemblies NoObjectFactoryException UnmarshalOutOfB
 or . If you are experiencing any of these exceptions, verify that your assemblies are configured oundsException UnknownUserException

correctly.

See Also

Visual Studio Add-in
Ice.FactoryAssemblies

https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.FactoryAssemblies
https://doc.zeroc.com/display/Ice35/Visual+Studio+Add-in
https://doc.zeroc.com/display/Ice35/Ice+Miscellaneous+Properties#IceMiscellaneousProperties-Ice.FactoryAssemblies

	Silverlight and .NET Compact Framework Support

