
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

1.
2.

Asynchronous Method Dispatch (AMD) in C-Sharp
The number of simultaneous synchronous requests a server is capable of supporting is determined by the number of threads in the server's thread

. If all of the threads are busy dispatching long-running operations, then no threads are available to process new requests and therefore clients pool
may experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of , addresses this scalability issue. Using AMD, a server can receive a AMI
request but then suspend its processing in order to release the dispatch thread as soon as possible. When processing resumes and the results are
available, the server sends a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distinguish a request that, in the server, is processed synchronously from a
request that is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., the callback object and operation arguments) for later processing by an
application thread (or thread pool). In this way, the server minimizes the use of dispatch threads and becomes capable of efficiently supporting
thousands of simultaneous clients.

An alternate use case for AMD is an operation that requires further processing after completing the client's request. In order to minimize the client's
delay, the operation returns the results while still in the dispatch thread, and then continues using the dispatch thread for additional work.

On this page:

Enabling AMD with Metadata in C#
AMD Mapping in C#

Callback Interface for AMD
Dispatch Method for AMD

AMD Exceptions in C#
AMD Example in C#

Enabling AMD with Metadata in C#
To enable asynchronous dispatch, you must add an metadata directive to your Slice definitions. The directive applies at the interface and ["amd"]
the operation level. If you specify at the interface level, all operations in that interface use asynchronous dispatch; if you specify ["amd"] ["amd"]
for an individual operation, only that operation uses asynchronous dispatch. In either case, the metadata directive replaces synchronous dispatch,
that is, a particular operation implementation must use synchronous or asynchronous dispatch and cannot use both.

Consider the following Slice definitions:

Slice

["amd"] interface I {
 bool isValid();
 float computeRate();
};

interface J {
 ["amd"] void startProcess();
 int endProcess();
};

In this example, both operations of interface use asynchronous dispatch, whereas, for interface , uses asynchronous dispatch I J startProcess
and uses synchronous dispatch.endProcess

Specifying metadata at the operation level (rather than at the interface or class level) minimizes the amount of generated code and, more importantly,
minimizes complexity: although the asynchronous model is more flexible, it is also more complicated to use. It is therefore in your best interest to limit
the use of the asynchronous model to those operations that need it, while using the simpler synchronous model for the rest.

AMD Mapping in C#
The C# mapping emits the following code for each AMD operation:

Callback interface
Dispatch method

https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model
https://doc.zeroc.com/display/Ice35/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Callback Interface for AMD

A callback interface is used by the implementation to notify the Ice run time about the completion of an operation. The name of this interface is
formed using the pattern . For example, an operation named defined in interface results in an interface named . AMD_class_op foo I AMD_I_foo
The interface is generated in the same scope as the interface or class containing the operation. Two methods are provided:

C#

public void ice_response(<params>);

The method allows the server to report the successful completion of the operation. If the operation has a non- return type, the ice_response void
first parameter to is the return value. Parameters corresponding to the operation's parameters follow the return value, in the ice_response out
order of declaration.

C#

public void ice_exception(System.Exception ex);

The method allows the server to raise an exception. Although any exception type could conceivably be passed to ,ice_exception ice_exception
the Ice run time the exception value using the same semantics as for synchronous dispatch.validates

Neither nor throw any exceptions to the caller.ice_response ice_exception

Dispatch Method for AMD

The dispatch method, whose name has the suffix , has a return type. The first parameter is a reference to an instance of the callback _async void
interface described above. The remaining parameters comprise the parameters of the operation, in the order of declaration.in

For example, suppose we have defined the following operation:

Slice

interface I {
 ["amd"] int foo(short s, out long l);
};

The callback interface generated for operation is shown below:foo

C#

public interface AMD_I_foo
{
 void ice_response(int __ret, long l);
 void ice_exception(System.Exception ex);
}

The dispatch method for asynchronous invocation of operation is generated as follows:foo

C#

public abstract void foo_async(AMD_I_foo __cb, short s, Ice.Current __current);

AMD Exceptions in C#

https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

There are two processing contexts in which the logical implementation of an AMD operation may need to report an exception: the dispatch thread
(the thread that receives the invocation), and the response thread (the thread that sends the response).

Although we recommend that the callback object be used to report all exceptions to the client, it is legal for the implementation to raise an exception
instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be caught by the Ice run time; the application's run time environment
determines how such an exception is handled. Therefore, a response thread must ensure that it traps all exceptions and sends the appropriate
response using the callback object. Otherwise, if a response thread is terminated by an uncaught exception, the request may never be completed
and the client might wait indefinitely for a response.

Whether raised in a dispatch thread or reported via the callback object, user exceptions are validated as described in , and local User Exceptions
exceptions may undergo the translation described in .Run-Time Exceptions

AMD Example in C#
To demonstrate the use of AMD in Ice, let us define the Slice interface for a simple computational engine:

Slice

module Demo {
 sequence<float> Row;
 sequence<Row> Grid;

 exception RangeError {};

 interface Model {
 ["amd"] Grid interpolate(Grid data, float factor)
 throws RangeError;
 };
};

Given a two-dimensional grid of floating point values and a factor, the operation returns a new grid of the same size with the values interpolate
interpolated in some interesting (but unspecified) way.

Our servant class derives from and supplies a definition for the method that creates a to hold the Demo._ModelDisp interpolate_async Job
callback object and arguments, and adds the to a queue. The method uses a statement to guard access to the queue:Job lock

C#

public class ModelI : Demo.ModelDisp_
{
 public override void interpolate_async(
 Demo.AMD_Model_interpolate cb,
 float[][] data,
 float factor,
 Ice.Current current)
 {
 lock(this)
 {
 _jobs.Add(new Job(cb, data, factor));
 }
 }

 private System.Collections.ArrayList _jobs = new System.Collections.ArrayList();
}

These are not necessarily two different threads: it is legal to send the response from the dispatch thread.

https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

After queuing the information, the operation returns control to the Ice run time, making the dispatch thread available to process another request. An
application thread removes the next from the queue and invokes , which uses (not shown) to perform the Job execute interpolateGrid
computational work:

C#

public class Job {
 public Job(Demo.AMD_Model_interpolate cb, float[][] grid, float factor)
 {
 _cb = cb;
 _grid = grid;
 _factor = factor;
 }

 public void execute()
 {
 if (!interpolateGrid()) {
 _cb.ice_exception(new Demo.RangeError());
 return;
 }
 _cb.ice_response(_grid);
 }

 private boolean interpolateGrid()
 {
 // ...
 }

 private Demo.AMD_Model_interpolate _cb;
 private float[][] _grid;
 private float _factor;
}

If returns , then is invoked to indicate that a range error has occurred. The statement following interpolateGrid false ice_exception return
the call to is necessary because does not throw an exception; it only marshals the exception argument and ice_exception ice_exception
sends it to the client.

If interpolation was successful, is called to send the modified grid back to the client.ice_response

See Also

User Exceptions
Run-Time Exceptions
Asynchronous Method Invocation (AMI) in C-Sharp
The Ice Threading Model

https://doc.zeroc.com/display/Ice35/User+Exceptions
https://doc.zeroc.com/display/Ice35/Run-Time+Exceptions
https://doc.zeroc.com/display/Ice35/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp
https://doc.zeroc.com/display/Ice35/The+Ice+Threading+Model

	Asynchronous Method Dispatch (AMD) in C-Sharp

