
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Visual Studio Add-in
The Ice Visual Studio Add-in manages all aspects of code generation for C++ and .NET projects, including automatically recompiling Slice files that 
have changed, removing obsolete generated files, and tracking dependencies.

On this page:

Activating the Add-in for a Visual Studio Project
Configuring Project Settings for Visual Studio
Using Environment Variables in Visual Studio Settings
Adding Slice Files to a Visual Studio Project
Generating Code for a Visual Studio Project
How the Add-in Locates your Ice Installation
$(IceHome) Macro
$(IceInclude) Macro
$(IceBin) Macro
$(IceLib) Macro
.NET DEVPATH support
Command-line Builds using Visual Studio

Activating the Add-in for a Visual Studio Project
Right-click on the project in the Solution Explorer and choose  or select  in the  menu. This opens a dialog Ice Configuration... Ice Configuration... Tools
that allows you to configure the project settings for Ice.

Configuring Project Settings for Visual Studio
The following settings are available:

Enable Ice Builder
This box must be checked to enable the Ice Builder in your project.

Trace Level
You can change the verbosity of messages printed to the  panel by selecting a different trace level, where  is less Output Errors Only
verbose and  is more verbose.Debug

Output directory for generated files
Set the directory for storing generated files.

Slice compiler options
Tick the corresponding check boxes to pass  (.NET only), , , or  options to the Slice compiler.--tie --ice --checksum --stream

Additional Slice compiler options
Enter extra Slice compiler options not supported by . These options are entered the same as they would be on the Slice compiler options
command line. For example, you can define preprocessor macros by entering .-DFoo -DBAR

Macro for exporting symbols from DLL (C++ only)
The macro for annotating generated code to mark symbols that should be exported from a shared library or DLL, equivalent to the Slice 
compiler option .--dll-export

Slice include directories
The list of directories to search for included Slice files (  option). The checkbox for each path controls whether the path is passed to the  -I -I
option as an absolute path or as a path relative to the project directory.

Link project with these additional libraries (C++ only)
Every Ice project is linked with the  and  libraries. You can link with additional Ice libraries by checking the appropriate boxes.Ice IceUtil

Add references to the following assemblies (.NET only)
Every Ice project references the  assembly. You can reference additional Ice assemblies by checking the appropriate boxes.Ice

Note that, after adding new configurations or platforms to your project, it may be necessary to disable and then re-enable the add-in for the 
new configuration or platform to get the correct Ice settings.

The add-in automatically adds the main  directory of your Ice installation to this list.slice



Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Using Environment Variables in Visual Studio Settings
You can include references to environment variables in the settings for , , Output directory for generated files Additional Slice compiler options
and . To do this, the environment variable must be entered using the format . For example, for Slice include directories $(VAR) Slice include 

 you could use .directories $(MY_PATH)

You cannot use environment variables in the  and  options in .--header-ext --source-ext Additional Slice compiler options

Adding Slice Files to a Visual Studio Project
Use  ->  and select  as the template to create and add a Slice file to a project. To add an existing Slice file to a project, Add New Item... Slice File (.ice)
use  -> Add Existing Item...

Generating Code for a Visual Studio Project
The add-in compiles a Slice file whenever you save the file. The add-in tracks dependencies among Slice files in the project and, after a change, 
recompiles only the affected files.

Generated files are automatically added to the project. For example, for , the add-in for C++ adds  and  to the project, Demo.ice Demo.cpp Demo.h
whereas the add-in for .NET adds  to the project.Demo.cs

Slice compilation errors are displayed in the Visual Studio  and  panels.Output Error List

How the Add-in Locates your Ice Installation
The add-in derives the location of your Ice installation from the location of its own DLL. For example, if the add-in's DLL is installed in C:

 then the add-in uses  as the top-level Ice installation directory. The add-in uses this top-level directory to compose the path \Ice\vsaddin C:\Ice
names of other subdirectories, such as  as the location of the Slice files included in your Ice distribution,  as the location C:\Ice\slice C:\Ice\bin
of the Slice compilers, and so on.

$(IceHome) Macro
The add-in makes extensive use of the   macro in C++ projects.   provides the full path to the home directory of the Ice $(IceHome) $(IceHome)
installation on the local computer. This macro may be used in user settings, for example to locate   (as slice2freeze.exe $(IceHome)

) or the Ice Slice directory (as  ).\bin\slice2freeze.exe $(IceHome)\slice

This macro is set through a Visual Studio C++ property sheet installed as part of the Ice installation on Windows: %AllUsersProfile%
 for Visual Studio 2010 and later.\ZeroC\Ice.props

$(IceInclude) Macro
The   macro provides the full path to the C++  directory of the Ice installation on the local computer. $(IceInclude) include

$(IceBin) Macro
The   macro provides the full path to the C++  directory of the Ice installation on the local computer. The macro takes into account the $(IceBin) bin
platform and compiler that are being used. The macro is used for example to set the  environment variable when debugging C++ applications. PATH

$(IceLib) Macro
The   macro provides the full path to the C++  directory of the Ice installation on the local computer. The macro takes into account the $(IceLib) lib
platform and compiler that are being used. The macro is used for example to set the library path in the linker settings. 

.NET DEVPATH support



Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

The add-in detects if a .NET project is configured for development mode by inspecting the  file. If a project is .exe.config<application-name>
in development mode, the Ice assemblies directory is automatically added to the  environment variable when the demo is run. References DEVPATH
to Ice components are also set with  to false to avoid copying Ice assemblies to the project's output directory. Note that the  Copy Local Copy Local
setting is not changed for references that are already added to the project.

Command-line Builds using Visual Studio
The add-in supports command-line builds using . For example:devenv

devenv MyProject.sln /build

Note that for this to work, command-line builds must be enabled for the add-in in the IDE; see  ->  and check  for Tools Add-in Manager Command Line
Ice.

See Also

slice2cpp Command-Line Options
slice2cs Command-Line Options

https://doc.zeroc.com/display/Ice35/slice2cpp+Command-Line+Options
https://doc.zeroc.com/display/Ice35/slice2cs+Command-Line+Options

	Visual Studio Add-in

