
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Slice2Java Ant Task
On this page:

Execution Environment
Dependencies
Parameters
Nested Elements
Using the Task

Ice for Java includes an ant task named that automates the execution of the Slice-to-Java compiler. The task and its supporting Slice2JavaTask
classes reside in the JAR file named , which normally can be found in the subdirectory of your Ice installation.ant-ice.jar lib

Execution Environment

The must be able to locate and spawn the executable. You can specify the directory of your Ice installation by Slice2JavaTask slice2java
defining the ant property or the environment variable, in which case the task assumes that the Slice compiler's executable is ice.home ICE_HOME
located in the subdirectory of the specified installation directory. For example, if is set to on Linux, the task assumes that bin ICE_HOME /opt/Ice
the executable path name is . Furthermore, the task also configures its shared library search path (if necessary for /opt/Ice/bin/slice2java
your platform) to ensure the executable can resolve its library dependencies.

If both and are defined, takes precedence. If neither are defined, the task assumes that the executable can already ice.home ICE_HOME ice.home
be found in your and that your shared library search path is configured correctly.PATH

Finally, you can use a task parameter to specify the full path name of the Slice compiler. Again, the task assumes that your shared library search path
is configured correctly.

Dependencies

The task minimizes recompilation by maintaining dependencies between Slice files. The task stores this information in a file named in the .depend
output directory and updates these dependencies after each invocation. (You can specify a different name for this file using a task parameter.)

Note that the task does not maintain dependencies between a Slice file and its generated Java source files. Consequently, removing the generated
Java source files does not cause the task to recompile a Slice file. In fact, the task only compiles a Slice file when any of the following conditions are
true:

no dependency file exists
no dependency information is found for the Slice file
the modification time of the Slice file is later than the modification time of the dependency file
the Slice file includes another Slice file that is eligible for compilation

The simplest way to force the task to recompile all of your Slice files is to remove the dependency file.

Parameters

The task supports the parameters listed in the following table:

Attribute Description Required

checksum Specifies the name of a class to contain the .Slice checksums No

dependen
cyfile

Specifies an alternate name for the dependency file. If you specify a relative filename, it is relative to ant's current
working directory. If not specified, the task uses the name by default. If you do not define this attribute and .depend o

 is defined, the task creates the file in the designated output directory (see).utputdir .depend outputdir

No

ice Instructs the Slice compiler to permit symbols that have the reserved prefix . This parameter is used in the Ice Ice
build system and is not normally required by applications.

No

outputdir Specifies the directory in which the Slice compiler generates Java source files. If not specified, the task uses ant's
current working directory.

No

stream Indicates whether to generate . If not specified, streaming support is not generated.streaming support No

tie Indicates whether to generate . If not specified, tie classes are not generated.tie classes No

translat
or

Specifies the path name of the Slice compiler. If not specified, the task locates the Slice compiler in its execution
.environment

No

https://doc.zeroc.com/display/Ice35/Using+Slice+Checksums+in+Java
https://doc.zeroc.com/display/Ice35/Streaming+Interfaces
https://doc.zeroc.com/display/Ice35/Tie+Classes+in+Java

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

For the flag parameters (, , and), legal positive values are , , or ; negative values are , , or .ice stream tie on true yes off false no

Nested Elements

Several Slice compiler options must be defined as nested elements of the task:

define
Defines a preprocessor macro. The element supports the attributes and (optionally) , as shown below:name value
<define name="FOO">
<define name="BAR" value="5">
These definitions are equivalent to the command-line options and , respectively.-DFOO -DBAR=5

fileset
Specifies the set of Slice files to be compiled. Refer to the ant documentation of its type for more information.FileSet

includepath
Specifies the include file search path for Slice files. In ant terminology, is a . Refer to the ant includepath path-like structure
documentation of its type for more information.Path

meta
Defines a global metadata directive in each Slice file as well as in each included Slice file. The element supports and attributes.name value

Using the Task

Define the following element in your project's build file to enable the task:taskdef

Ant

<taskdef name="slice2java" classname="Slice2JavaTask"/>

This configuration assumes that is already present in ant's class path. Alternatively, you can specify the JAR explicitly as follows:ant-ice.jar

Ant

<taskdef name="slice2java" classpath="/opt/Ice/lib/ant-ice.jar"
 classname="Slice2JavaTask"/>

Once activated, you can invoke the task to translate your Slice files. The example shown below is a simplified version of the ant project for the hello
demo:

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Ant

<target name="generate" depends="init">
 <mkdir dir="generated"/>
 <slice2java outputdir="generated">
 <fileset dir="." includes="Hello.ice"/>
 </slice2java>
</target>

<target name="compile" depends="generate">
 <mkdir dir="classes"/>
 <javac srcdir=".:generated" destdir="classes">
 <exclude name="generated/**"/>
 ...
 </javac>
</target>

<target name="all" depends="compile"/>

<target name="clean">
 <delete dir="generated"/>
 <delete dir="classes"/>
</target>

This project demonstrates some practices that we encourage you to adopt in your own projects. First, it is helpful to keep the source files generated
by the Slice compiler separate from your application's source files by dedicating an output directory for the exclusive use of the Slice compiler. Doing
so helps to minimize confusion and makes it easier to configure a source-code management system to ignore generated files.

Next, we also recommend that you include a target in your ant project that removes this output directory. Assuming that the dependency file (clean .
) is also stored in this directory, removing the output directory is an efficient way to clean up your project's source tree and guarantees that all depend

of your Slice files are recompiled in the next build.

Finally, after seeing the element in the invocation of you might infer that the generated code was not being compiled, but the exclude javac
presence of the output directory in the attribute ensures that the generated code is included in the build. The purpose of the srcdir exclude
element is to prevent ant from including the generated files twice in its target list.

See Also

slice2java Command-Line Options
Using the Slice Compilers
Using Slice Checksums in Java
Tie Classes in Java
Streaming Interfaces

https://doc.zeroc.com/display/Ice35/slice2java+Command-Line+Options
https://doc.zeroc.com/display/Ice35/Using+the+Slice+Compilers
https://doc.zeroc.com/display/Ice35/Using+Slice+Checksums+in+Java
https://doc.zeroc.com/display/Ice35/Tie+Classes+in+Java
https://doc.zeroc.com/display/Ice35/Streaming+Interfaces

	Slice2Java Ant Task

