
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

The Java Utility Library
Ice for Java includes a number of utility APIs in the package and the class. This section summarizes the contents of these APIs IceUtil Ice.Util
for your reference.

On this page:

The IceUtil Package in Java
Cache and Store Classes

The Ice.Util Class in Java
Communicator Initialization Methods
Identity Conversion
Per-Process Logger Methods
Property Creation Methods
Proxy Comparison Methods
Stream Creation
Version Information

The Package in JavaIceUtil

Cache and ClassesStore

The class allows you to efficiently maintain a cache that is backed by secondary storage, such as a Berkeley DB database, without holding a Cache
lock on the entire cache while values are being loaded from the database. If you want to create that store their state in a evictors for servants
database, the class can simplify your evictor implementation considerably.Cache

The class has the following interface:Cache

Java

package IceUtil;

public class Cache {
 public Cache(Store store);

 public Object pin(Object key);
 public Object pin(Object key, Object o);
 public Object unpin(Object key);

 public Object putIfAbsent(Object key, Object newObj);
 public Object getIfPinned(Object key);

 public void clear();
 public int size();
}

Internally, a maintains a map of name-value pairs. The implementation of takes care of maintaining the map; in particular, it ensures Cache Cache
that concurrent lookups by callers are possible without blocking even if some of the callers are currently loading values from the backing store. In
turn, this is useful for evictor implementations, such as the Freeze . The class does not limit the number of entries in background save evictor Cache
the cache — it is the job of the evictor implementation to limit the map size by calling on elements of the map that it wants to evict.unpin

The class works in conjunction with a interface for which you must provide an implementation. The interface is trivial:Cache Store Store

You may also want to examine the implementation of the Freeze background save evictor in the source distribution; it uses IceUtil.
 for its implementation.Cache

https://doc.zeroc.com/display/Ice35/Servant+Evictors
https://doc.zeroc.com/display/Ice35/Background+Save+Evictor

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

Java

package IceUtil;

public interface Store {
 Object load(Object key);
}

You must implement the method in a class that you derive from . The implementation calls when it needs to retrieve the load Store Cache load
value for the passed key from the backing store. If cannot locate a record for the given key because no such record exists, it must return null. If load

 fails for some other reason, it can throw an exception derived from , which is propagated back to the load java.lang.RuntimeException
application code.

The public member functions of behave as follows:Cache

Cache(Store s)

The constructor initializes the cache with your implementation of the interface.Store

Object pin(Object key, Object val)

To add a key-value pair to the cache, your evictor can call . The return value is null if the key and value were added; otherwise, if the map already pin
contains an entry with the given key, the entry is unchanged and returns the original value for that key.pin

This version of does call to retrieve the entry from backing store if it is not yet in the cache. This is useful when you add a newly-pin not load
created object to the cache.

Object pin(Object key)

This version of returns the value stored in the cache for the given key if the cache already contains an entry for that key. If no entry with the pin
given key is in the cache, calls to retrieve the corresponding value (if any) from the backing store. returns the value returned by , pin load pin load
that is, the value if could retrieve it, null if could not retrieve it, or any exception thrown by .load load load

Object unpin(Object key)

unpin removes the entry for the given key from the cache. If the cache contained an entry for the key, the return value is the value for that key;
otherwise, the return value is null.

Object putIfAbsent(Object key, Object val)

This function adds a key-value pair to the cache. If the cache already contains an entry for the given key, returns the original value for putIfAbsent
that key. If no entry with the given key is in the cache, calls to retrieve the corresponding entry (if any) from the backing store putIfAbsent load
and returns the value returned by .load

If the cache does not contain an entry for the given key and does not retrieve a value for the key, the method adds the new entry and returns load
null.

Object getIfPinned(Object key)

This function returns the value stored for the given key. If an entry for the given key is in the map, the function returns the corresponding value;
otherwise, the function returns null. does not call .getIfPinned load

void clear()

This function removes all entries in the map.

int size()

This function returns the number of entries in the map.

The Class in JavaIce.Util

Communicator Initialization Methods

Ice.Util provides a number of overloaded methods that .initialize create a communicator

https://doc.zeroc.com/display/Ice35/Command-Line+Parsing+and+Initialization

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Identity Conversion

Ice.Util contains two methods for of type to and from strings.converting object identities Ice.Identity

Per-Process Logger Methods

Ice.Util provides methods for getting and setting the .per-process logger

Property Creation Methods

Ice.Util provides a number of overloaded methods that .createProperties create property sets

Proxy Comparison Methods

Two methods, and , allow you to that are stored in proxies proxyIdentityCompare proxyIdentityAndFacetCompare compare object identities
(either ignoring the facet or taking the facet into account).

Stream Creation

The methods , and create for use with dynamic invocation.createInputStream wrapInputStream createOutputStream streams

Version Information

The and methods return the version of the Ice run time:stringVersion intVersion

Java

public static String stringVersion();
public static int intVersion();

The method returns the Ice version in the form , for example, . For beta releases, the version stringVersion . .<major> <minor> <patch> 3.4.2
is , for example, .. b<major> <minor> 3.4b

The method returns the Ice version in the form , where is the major version number, is the minor version number, and intVersion AABBCC AA BB CC
is patch level, for example, for version 3.4.2. For beta releases, the patch level is set to 51 so, for example, for version 3.4b, the value is 30402 30451
.

See Also

Background Save Evictor
Java Mapping for Interfaces
Command-Line Parsing and Initialization
Setting Properties
Object Identity
Java Streaming Interfaces

https://doc.zeroc.com/display/Ice35/Object+Identity#ObjectIdentity-IdentityHelperFunctions
https://doc.zeroc.com/display/Ice35/The+Per-Process+Logger
https://doc.zeroc.com/display/Ice35/Setting+Properties
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Interfaces#JavaMappingforInterfaces-compare
https://doc.zeroc.com/display/Ice35/Java+Streaming+Interfaces
https://doc.zeroc.com/display/Ice35/Background+Save+Evictor
https://doc.zeroc.com/display/Ice35/Java+Mapping+for+Interfaces
https://doc.zeroc.com/display/Ice35/Command-Line+Parsing+and+Initialization
https://doc.zeroc.com/display/Ice35/Setting+Properties
https://doc.zeroc.com/display/Ice35/Object+Identity
https://doc.zeroc.com/display/Ice35/Java+Streaming+Interfaces

	The Java Utility Library

