
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Programming IceSSL in Java
This page describes the Java API for the IceSSL plug-in.

On this page:

The IceSSL Plugin Interface in Java
Obtaining SSL Connection Information in Java
Installing a Certificate Verifier in Java
Converting Certificates in Java

The IceSSL Plugin Interface in Java
Applications can interact directly with the IceSSL plug-in using the native Java interface . A reference to a object must be IceSSL.Plugin Plugin
obtained from the communicator in which the plug-in is installed:

Java

Ice.Communicator comm = // ...
Ice.PluginManager pluginMgr = comm.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;

The interface supports the following methods:Plugin

Java

package IceSSL;

public interface Plugin extends Ice.Plugin
{
 void setContext(javax.net.ssl.SSLContext context);
 javax.net.ssl.SSLContext getContext();

 void setCertificateVerifier(CertificateVerifier verifier);
 CertificateVerifier getCertificateVerifier();

 void setPasswordCallback(PasswordCallback callback);
 PasswordCallback getPasswordCallback();

 void setKeystoreStream(java.io.InputStream stream);

 void setTruststoreStream(java.io.InputStream stream);

 void addSeedStream(java.io.InputStream stream);
}

The methods are summarized below:

setContext
getContext
These methods are for and rarely used in practice.advanced use cases

setCertificateVerifier
getCertificateVerifier
These methods install and retrieve a custom certificate verifier object that the plug-in invokes for each new connection. getCertificateVe

 returns null if a verifier has not been set.rifier

setPasswordCallback
getPasswordCallback

https://doc.zeroc.com/display/Ice35/Advanced+IceSSL+Topics

Ice 3.5.1 Documentation

2 Copyright © 2017, ZeroC, Inc.

These methods install and retrieve a password callback object that supplies IceSSL with passwords. returns null if getPasswordCallback
a callback has not been set. Using is a to setting passwords in clear-text configuration setPasswordCallback more secure alternative
files.

setKeystoreStream
Supplies an input stream for a keystore containing the key pair. The property is ignored if this method is called with a IceSSL.Keystore
non-null value. You may supply the same input stream object to this method and to if your keystore contains your setTruststoreStream
key pair as well as your trusted CA certificates.

setTruststoreStream
Supplies an input stream for a truststore containing your trusted CA certificates. The property is ignored if this IceSSL.Truststore
method is called with a non-null value. You may supply the same input stream object to this method and to if your setKeystoreStream
keystore contains your key pair as well as your trusted CA certificates.

addSeedStream
Adds an input stream that supplies seed data for the random number generator. You may call this method multiple times if necessary.

Obtaining SSL Connection Information in Java
You can obtain information about any SSL connection using the operation on a . It returns an getInfo objectConnection IceSSL.

 class instance that derives from the Slice class . The Slice base class is defined as follows:NativeConnectionInfo IceSSL::ConnectionInfo

Slice

module Ice {
 local class ConnectionInfo {
 bool incoming;
 string adapterName;
 };

 local class IPConnectionInfo extends ConnectionInfo {
 string localAddress;
 int localPort;
 string remoteAddress;
 int remotePort;
 };
};

module IceSSL {
 local class ConnectionInfo extends Ice::IPConnectionInfo {
 string cipher;
 Ice::StringSeq certs;
 };
};

In turn, the Java class is defined as follows.NativeConnectionInfo

Java

public class NativeConnectionInfo extends ConnectionInfo
{
 public java.security.cert.Certificate[] nativeCerts;
}

Installing a Certificate Verifier in Java
A new connection undergoes a series of verification steps before an application is allowed to use it. The low-level SSL engine executes certificate

 and, assuming the certificate chain is successfully validated, IceSSL performs as directed by its validation procedures additional verification
configuration properties. Finally, if a certificate verifier is installed, IceSSL invokes it to provide the application with an opportunity to decide whether
to allow the connection to proceed.

The interface has only one method:CertificateVerifier

https://doc.zeroc.com/display/Ice35/Advanced+IceSSL+Topics
https://doc.zeroc.com/display/Ice35/IceSSL+Properties#IceSSLProperties-IceSSL.Keystore
https://doc.zeroc.com/display/Ice35/IceSSL+Properties#IceSSLProperties-IceSSL.Truststore
https://doc.zeroc.com/display/Ice35/Using+Connections
https://doc.zeroc.com/display/Ice35/IceSSL#IceSSL-PublicKeyInfrastructure
https://doc.zeroc.com/display/Ice35/IceSSL#IceSSL-PublicKeyInfrastructure
https://doc.zeroc.com/display/Ice35/Configuring+IceSSL#ConfiguringIceSSL-ConfiguringTrustRelationships

Ice 3.5.1 Documentation

3 Copyright © 2017, ZeroC, Inc.

Java

package IceSSL;

public interface CertificateVerifier
{
 boolean verify(NativeConnectionInfo info);
}

IceSSL rejects the connection if returns , and allows it to proceed if the method returns . The method receives a verify false true verify Native
 object that describes the connection's attributes.ConnectionInfo

The member of the is an array of certificates representing the peer's certificate chain. The array is nativeCerts NativeConnectionInfo
structured so that the first element is the peer's certificate, followed by its signing certificates in the order they appear in the chain, with the root CA
certificate as the last element. This member is null if the peer did not present a certificate chain.

The member is a description of the ciphersuite that SSL negotiated for this connection. The local and remote address information is provided cipher
in and , respectively. The member indicates whether the connection is inbound (a server connection) or localAddress remoteAddress incoming
outbound (a client connection). Finally, if is , the member supplies the name of the object adapter that hosts the incoming true adapterName
endpoint.

The following class is a simple implementation of a certificate verifier:

Java

import java.security.cert.X509Certificate;
import javax.security.auth.x500.X500Principal;

class Verifier implements IceSSL.CertificateVerifier
{
 public boolean
 verify(IceSSL.NativeConnectionInfo info)
 {
 if (info.nativeCerts != null)
 {
 X509Certificate cert = (X509Certificate)info.nativeCerts[0];
 X500Principal p = cert.getIssuerX500Principal();
 if (p.getName().toLowerCase().indexOf("zeroc") != -1)
 {
 return true;
 }
 }
 return false;
 }
}

In this example, the verifier rejects the connection unless the string is present in the issuer's distinguished name of the peer's certificate. In a zeroc
more realistic implementation, the application is likely to perform detailed inspection of the certificate chain.

Installing the verifier is a simple matter of calling on the plug-in interface:setCertificateVerifier

Java

IceSSL.Plugin sslPlugin = // ...
sslPlugin.setCertificateVerifier(new Verifier());

You should install the verifier before any SSL connections are established. An alternate way of installing the verifier is to define the IceSSL.
 property with the class name of your verifier implementation. IceSSL instantiates the class using its default constructor.CertVerifier

You can also install a certificate verifier using a to avoid making changes to the code of an existing application.custom plug-in

https://doc.zeroc.com/display/Ice35/IceSSL+Properties#IceSSLProperties-IceSSL.CertVerifier
https://doc.zeroc.com/display/Ice35/IceSSL+Properties#IceSSLProperties-IceSSL.CertVerifier
https://doc.zeroc.com/display/Ice35/Advanced+IceSSL+Topics#AdvancedIceSSLTopics-UsingCustomPlug-inswithIceSSL

Ice 3.5.1 Documentation

4 Copyright © 2017, ZeroC, Inc.

Converting Certificates in Java
Java does not provide a simple way to create a certificate object from a PEM-encoded string, therefore IceSSL offers the following convenience
method:

Java

package IceSSL;

public final class Util
{
 // ...

 public static java.security.cert.X509Certificate
 createCertificate(String certPEM)
 throws java.security.cert.CertificateException;
}

Given a string in the PEM format, returns the equivalent object.createCertificate X509Certificate

See Also

Using Connections
Public Key Infrastructure
Configuring IceSSL
Advanced IceSSL Topics

The Ice run time calls the method during the connection-establishment process, therefore delays in the implementation verify verify
have a direct impact on the performance of the application. Do not make remote invocations from your implementation of .verify

https://doc.zeroc.com/display/Ice35/Using+Connections
https://doc.zeroc.com/display/Ice35/IceSSL#IceSSL-PublicKeyInfrastructure
https://doc.zeroc.com/display/Ice35/Configuring+IceSSL
https://doc.zeroc.com/display/Ice35/Advanced+IceSSL+Topics

	Programming IceSSL in Java

