
Ice 3.5.1 Documentation

1 Copyright © 2017, ZeroC, Inc.

Using Slice Checksums in Ruby
The Slice compilers can optionally generate of Slice definitions. For , the option causes the compiler to generate checksums slice2rb --checksum
code that adds checksums to the hash collection . The checksums are installed automatically when the Ruby code is first Ice::SliceChecksums
parsed; no action is required by the application.

In order to verify a server's checksums, a client could simply compare the two hash objects using a comparison operator. However, this is not
feasible if it is possible that the server might return a superset of the client's checksums. A more general solution is to iterate over the local
checksums as demonstrated below:

Ruby

serverChecksums = ...
for i in Ice::SliceChecksums.keys
 if not serverChecksums.has_key?(i)
 # No match found for type id!
 elif Ice::SliceChecksums[i] != serverChecksums[i]
 # Checksum mismatch!
 end
end

In this example, the client first verifies that the server's dictionary contains an entry for each Slice type ID, and then it proceeds to compare the
checksums.

See Also

Slice Checksums

https://doc.zeroc.com/display/Ice35/Slice+Checksums
https://doc.zeroc.com/display/Ice35/Slice+Checksums

	Using Slice Checksums in Ruby

