Ice 3.5.1 Documentation

The main Program in Ruby

On this page:

® |nitializing the Ice Run Time in Ruby

® The Ice::Application Class in Ruby
© Catching Signals in Ruby
© Ice::Application and Properties in Ruby
O Limitations of Ice::Application in Ruby

Initializing the Ice Run Time in Ruby

The main entry point to the Ice run time is represented by the local interface | ce: : Comruni cat or . You must initialize the Ice run time by calling | ce
;rinitialize before you can do anything else in your program.

Ice::initialize returns areference to an instance of | ce: : : Conmuni cat or :

Ruby

require 'lce

status = 0
ic = nil
begi n
ic = lce::initialize(ARGY)
...
rescue => ex
puts ex
status = 1
end

...

Ice::initialize acceptsthe argument list that is passed to the program by the operating system. The function scans the argument list for any co
mmand-line options that are relevant to the Ice run time; any such options are removed from the argument list so, when I ce: : i ni ti al i ze returns,
the only options and arguments remaining are those that concern your application. If anything goes wrong during initialization, i ni ti al i ze throws
an exception.

Before leaving your program, you must call Communi cat or . dest r oy. The dest r oy operation is responsible for finalizing the Ice run time. In
particular, dest r oy ensures that any outstanding threads are joined with and reclaims a number of operating system resources, such as file
descriptors and memory. Never allow your program to terminate without calling dest r oy first; doing so has undefined behavior.

The general shape of our program is therefore as follows:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/Ice35/Setting+Properties+on+the+Command+Line

Ice 3.5.1 Documentation

Ruby

require 'lce

status = 0

ic = nil
begi n
ic = lce::initialize(ARGY)
...
rescue => ex
puts ex
status = 1
end
ific
begi n

ic.destroy()
rescue => ex
puts ex
status =1
end
end

exit(status)

Note that the code places the callto | ce: : i ni tial i ze into a begi n block and takes care to return the correct exit status to the operating system.
Also note that an attempt to destroy the communicator is made only if the initialization succeeded.

The Il ce: : Appli cati on Class in Ruby

The preceding program structure is so common that Ice offers a class, | ce: : Appl i cat i on, that encapsulates all the correct initialization and
finalization activities. The synopsis of the class is as follows (with some detail omitted for now):

Ruby

nodul e Ice
cl ass Application
def main(args, configFile=nil, initData=nil)
def run(args)
def Application.appNane()
def Application. communi cator ()

end
end

The intent of this class is that you specialize | ce: : Appl i cat i on and implement the abstract r un method in your derived class. Whatever code you
would normally place in your main program goes into r un instead. Using | ce: : Appl i cat i on, our program looks as follows:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Ruby
require 'lce'

class dient < Ice::Application
def run(args)
dient code here...
return O
end
end

app = dient.new)
status = app. mai n(ARGY)
exit (status)

If you prefer, you can also reopen | ce: : Appl i cat i on and define r un directly:

Ruby
require 'lce'

class lce:: Application
def run(args)
Cdient code here...
return O
end
end

app = lce:: Application. new)
status = app. mai n(ARGY)
exit(status)

You may also call nai n with an optional file name oran I ni ti al i zat i onDat a structure. If you pass a configuration file name to nai n, the settings
in this file are overridden by settings in a file identified by the | CE_CONFI G environment variable (if defined). Property settings supplied on the comma
nd line take precedence over all other settings.

The Appl i cati on. mai n method does the following:

1. Itinstalls an exception handler. If your code fails to handle an exception, Appl i cat i on. mai n prints the exception information before
returning with a non-zero return value.

2. ltinitializes (by calling | ce: : i niti al i ze) and finalizes (by calling Comruni cat or . dest r oy) a communicator. You can get access to the
communicator for your program by calling the static conmuni cat or accessor.

3. It scans the argument list for options that are relevant to the Ice run time and removes any such options. The argument list that is passed to
your r un method therefore is free of Ice-related options and only contains options and arguments that are specific to your application.

4. It provides the name of your application via the static appNane method. The return value from this call is the first element of the argument
vector passed to Appl i cati on. nai n, so you can get at this name from anywhere in your code by calling | ce: : Appl i cati on: : appNane
(which is often necessary for error messages).

5. Itinstalls a signal handler that properly shuts down the communicator.

Using | ce: : Appl i cati on ensures that your program properly finalizes the Ice run time, whether your program terminates normally or in response

to an exception or signal. We recommend that all your programs use this class; doing so makes your life easier. In addition | ce: : Appl i cati on
also provides features for signal handling and configuration that you do not have to implement yourself when you use this class.

Catching Signals in Ruby

A program typically needs to perform some cleanup work before terminating, such as flushing database buffers or closing network connections. This
is particularly important on receipt of a signal or keyboard interrupt to prevent possible corruption of database files or other persistent data.

To make it easier to deal with signals, | ce: : Appl i cat i on encapsulates Ruby's signal handling capabilities, allowing you to cleanly shut down on
receipt of a signal:

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Using+Configuration+Files
https://doc.zeroc.com/display/Ice35/Using+Configuration+Files#UsingConfigurationFiles-ICE_CONFIG
https://doc.zeroc.com/display/Ice35/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/Ice35/Setting+Properties+on+the+Command+Line

Ice 3.5.1 Documentation

Ruby

cl ass Application
def Application.destroyOnlnterrupt()

def Application.ignorelnterrupt()

def Application.callbackOnlnterrupt()
def Application.holdlnterrupt()

def Application.rel easelnterrupt()
def Application.interrupted()

def interruptCallback(sig):
Default inplenmentation does not hing.
end
...
end

The methods behave as follows:

® destroyOnl nterrupt
This method installs a signal handler that destroys the communicator if it is interrupted. This is the default behavior.

® jgnorelnterrupt
This method causes signals to be ignored.

® cal | backOnl nterrupt
This function configures | ce: : Appl i cati on toinvoke i nt errupt Cal | back when a signal occurs, thereby giving the subclass
responsibility for handling the signal.

® holdlnterrupt
This method temporarily blocks signal delivery.

® rel easel nterrupt
This method restores signal delivery to the previous disposition. Any signal that arrives after hol dl nt er r upt was called is delivered when
you call r el easel nterrupt.

® interrupted
This method returns Tr ue if a signal caused the communicator to shut down, Fal se otherwise. This allows us to distinguish intentional
shutdown from a forced shutdown that was caused by a signal. This is useful, for example, for logging purposes.

® interruptCall back
A subclass implements this function to respond to signals. The function may be called concurrently with any other thread and must not raise
exceptions.

By default, | ce: : Appl i cati on behaves as if dest r oyOnl nt er r upt was invoked, therefore our program requires no change to ensure that the
program terminates cleanly on receipt of a signal. (You can disable the signal-handling functionality of | ce: : Appl i cat i on by passing the constant
NoSi gnal Handl i ng to the constructor. In that case, signals retain their default behavior, that is, terminate the process.) However, we add a
diagnostic to report the occurrence of a signal, so our program now looks like:

Copyright © 2017, ZeroC, Inc.

Ice 3.5.1 Documentation

Ruby
require 'lce'

class MyApplication < Ice::Application
def run(args)
Cient code here...

if lce::Application::interrupted()
print Ice::Application::appNanme() +
end

term nating"

return O
end
end

app = MyApplication. new()
status = app. mai n(ARGY)
exit(status)

| ce: : Appl i cati on and Properties in Ruby

Apart from the functionality shown in this section, | ce: : Appl i cat i on also takes care of initializing the Ice run time with property values. Properties
allow you to configure the run time in various ways. For example, you can use properties to control things such as the thread pool size or the trace
level for diagnostic output. The mai n method of | ce: : Appl i cati on accepts an optional second parameter allowing you to specify the name of a
configuration file that will be processed during initialization.

Limitations of | ce: : Appl i cati on in Ruby

I ce:: Application is a singleton class that creates a single communicator. If you are using multiple communicators, you cannot use | ce: :
Appl i cati on. Instead, you must structure your code as we saw in Hello World Application (taking care to always destroy the communicator).

See Also

Hello World Application
Properties and Configuration
Communicator Initialization
Logger Facility

Copyright © 2017, ZeroC, Inc.

https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Hello+World+Application
https://doc.zeroc.com/display/Ice35/Properties+and+Configuration
https://doc.zeroc.com/display/Ice35/Communicator+Initialization
https://doc.zeroc.com/display/Ice35/Logger+Facility

	The main Program in Ruby

